
ETUDE, A RECURSIVE DIALOG MANAGER WITH
EMBEDDED USER INTERFACE PATTERNS

Roberto Pieruccini, Sashu Cusky, Krishnu Dqanidhi, Bob Carpenter, Michael Phillips

Speechworks International, 17 State Street, New York, NY 10004, USA
(roberto, s c a s k e y , k r i s h n a . d a y a n i d h i , b o b . c a r p e n t e r , phillips)@speechworks.com

ABSTRACT
In this p a p we describe ETUDE, a dialog manager that sup
ports recursive descriptions of the dialog flow in spoken dialog
applications. We also intoduce the notion of user interfact
patterns, i.e. those dialog pattems that are fieqnently used in
applications. We then describe how these patterns can be built
into the dialog manager engine in order to facilitate the design
and development of wmplex applications.

1. INTRODUCTION
Most of the enterprise telephony spoken dialog systems de-
ployed today are based on the directed dialog paradigm 161, in
which the flow of the conversation is highly structured with
carefully designed prompts to solicit a response from the user
that falls within the ,defmed gainmar of that dialog turn. In
g e n a l a directed dialog can be represented by a finite state
conholler whose states comspnd to the system actions (e.g.
prompting, recognizing, accessing external datahases, etc.).
Traditionally, developers of enterprise dialog systems developed
the logic of directed dialog call llow using tools provided by the
telephony platform (e.g. Intervoice Brite, http:/ /w.brite.wm)
and reminiscent ofthe IVR development systems, possibly with
the support of native languages such as C b t and VB.

As the complexity of the systems evolves in bath the number of
dialog states of the controller and in the degree of mixed initia-
tive, the cost of design, development and maintenance increases.
One source of wmplexity in a directed dialog system is the in-
troduction of general U1 patterns that support mixed initiative.
Examples of patterns that may appear at any step of the dialog
are commands such as repear, back-up, stanover. as well as the
commands for navigating between different branches of the
application. In order to increase the degree of mixed-initiative
and allow efficient interaction with the system especially by
expert users, usen may provide extra intormation beyond what
was requested in the prompt. Similarly allowing for digressions
at some steps of the dialog, eithcr for clarification or to complete
subkks, would enhance the overall usability of the system.

With the competing objectives of reducing design and develop
ment costs and also and allowing more flexible interactions, it
Seems necessary to completely or patially automate the design
and the implementation of the dialog strategy. Furthermore, the
designer must be afforded the freedom to specify the user inter-
face with a line d e g m of wntrol. Such automation can be
achieved by introduction of a dialog manager with built-in be-
havior patterns that can bt: understood, tuned and deployed by

dialog system designers and developen. The challenge is to find
the right compromise between built-in behavior of the dialog
manager and the flexibility required by the designers.

Among several sophisticated dialog manager schema [I] [2],
fmite state automata and recursive transition networks [3] 141
have teen successfully used in dialog system as ways of both
describing and wntrolling the dialog flow. We describe here
ERILlE, an implementation of a recursive transition netwok
controller for dialog system that addresses the issues described
above. ETUDE can be summarized as follows. A dialog flow is
specified as a directed graph whose ncdes repremt actions (e.g.
prompts, recognition, database access, etc.) that the dialog sys-
tem invokes to interact with the external environment (e.g. the
caller, the backend, etc.) and whose transitions are associated to
conditions on the session variables. One of the distinguishing
characteristics of ETUDE is that it permits recursion in the
sense that a single node may be expanded as a whole dialog
itself. In the rest of the paper, we describe how ETUDE imple-
ments UI patterns such as backing up, entering a subdialog and
jumping out of the cment dialog and taking up another one.
ETUDE’S dialog execution skategy dimtly supports state p”-
sistence, winch is especially useful for stateless architectures
such as V o i c e W .

In the rest of this paper we will describe the dialog flow ahstrac
tion and the implementation of the ETUDE dial- manager

2. THE DIALOG FLOW ABSTRACTION
The state of an individual dialog session is represented by a
fmme, winch maps keys wnsisting of strings to values, which
can be strings, numbers, Bwleans, sequences of values, or
frames. A dialog is a pair D=(N,Ns), where

N = (N I , N2 ,. . .,N,} is a set of ncdes, and N S E N is the start
or initial node. where

= (T ,,T? ,... T ~) is a sequence of transitions, and A is an ac-

tion. A mnsition is a pair T = (N,,C), where N E E N is the
drstimtion node of the transition and C is a condition. A con-
dition is a function mapping frames to BooIran values. An ac-
tion is an arbitrary function mapping a frdme to a frame. The
execution of a dialog on a frame is defined awrdmg to the
following pseudocode:

FIBW enecutP(Dia1og d. Fraise f l 1

A node is a pairN = (T,A)

for (Node n = d.initialNode; rl != XIUl l i 1
f i r ! .ac t ion l f I ;

0-7803-7343-X/02/$17.00 0 2002 IEEE 244

mailto:phillips)@speechworks.com
http://w.brite.wm

T r a n s i t i 3 n s ts = n . t r a n s i t i l n S : " = null;
for [k = O;k < ts.length 6 L n != null; tik)

if 1 ts Ikl . c o n d i t i o n ! f 1)
n=ts! k l . d e s t i n a t i o n ;

return f i

I

where d.initialNode is the initial node of dialog d; n.action is
the action associated with node n; n.transitions is the sequence
of transitions associated with node n; u.length is the length of
tr; u[k] is the HI'' transition ofu ; rr[k].condition is the condi-
tion associated with the &Ist transition of tr, and
u[k].dfftination is the M i t i o n node associated with the HI'"
bansition o fu .

Note that the evaluation function of a dialog has the same form
as an action. In general, ETUDE supports recursion by allowing
the action of a given node in a dialog to be given by another
dialog. This helps smcture complex dialogs into subdialogs.

3. GOTO AND GOSUB SHORTCUTS

In a directed dialog application the dialog manager strictly con-
trols the course ofthe conversation and there is minimal built-in
support for caller initiative. Directed dialog is an effective con-
versatioial strategy for new usels, who appreciate the guidance
provided by the system and it allows them to quickly form a
mental map of the service. However a strictly directed dialog
strategy can get in the way of expert and repeat callers uho are
seeking for a more efficient interaction. Certain applications
require a higher degree of initiative. The concept of shortcuts
tries to address both strategies by allowing designers to overlay
a set of shortcuts over the directed dialog graph. We identified
two kinds ofsbortcuts, namely GOT0 and GOSUB shortcuts:

GOTO shortcuts permit transitions from an origin node within
one dialog to a destination node that is outside the dialog. In
practice, a G W O shortcut acts as a transition, the only differ-
ence being in that the destination node may be outside the CUT-

rent dialog. Once a GOTO shomut is executed, the dialog pr-
ceeds from the destination node without returning to the original
node. GO-0 shortcuts have to be defmed and implemented
taking into consideration the recursive nature ofthe dialog exe-
cution. To pick out a node uniquely, a path must be specified to
the node through the subdialog hierarchy. For example, with:

D,.nodes = (..., N ,) , N I ,...)

Ni =(Ti,&)

N, =(Ti,&)
&.nodes={ ..., N , ,... }
D2.nodes = (. . . ,NI ,... }

If we want to establish a GOT0 shortcut from node N , of dm
logDz (when a certain condition C, venhes) to node Nk of
dialog E, when dialog E, is invoked as the action of N , (dialog
4 Could be invoked as an action of other nodes as well). We

also assume that dialog 4 is the main dialog and that the ac-
tion associated to the origin node NI is a terminal (i.e. it is not a
dialog) collection action (i.e. it is an action directly connected to
speech recognition collection events). When the system is exe-
cuting node N I , the execution stack can be represented as
N J . N I , meaning that the execution environment is currently
executing the fiction associated to node NI which in tum is
invoking the fiction associated to node N I . The destination
node of the desired GOTO shortcut can be identified by the
execution slack N,.Nk. The algo&m for the implementation
of a GOT0 shortcut has to perform the following two opera-
tions: a) Pop nodes out of the execution slack until the outer
execution layer is reached b) Push nodes into the execution
stack until the defmed destination node stack is reached.

An example of the use of GOTO shortcuts is global navigation
commands. For instance, consider the following transaction (this
example follows the dialogs s h o w in Fig. 1)

S: Wouldyou like to get an account balance or make a tramJer?
U: Make a transfer.
S: From which account would you like to transfer, checking or
savings?
U: Savings.
S: How much wovldyou like to mnsJer from savings?
U: Uh. Go to account balance.
S: Account balance. For which account would you like a bol-
a n a checking or savings?

GOSUB shortcuts are used to implement local digressions in the
dialog, but differ from sub-dialogs in that they return for re-
execution ofthe invoking node. An example of a WSLlB short-
cut can be exemplified by the following dialog.

S: U'ouldyou like to get an account balance 01 make a transfer?
U: Make a transfer.
S: From which account would you like to transfer. checking or
savings?
U: Savings. please.
S: How much wouldyou like to mnsjer Jrom savings?
U: Hmm. How much money do I hove in my savings?
S: Account Balance. The balance of your savings account is
2.355dollars and 37cents.
S: How much wouldyou like to transJer from savings?

In this case, in wntrast to the GOT0 shortcut example, the sys-
tem executes the amount balance subdiilog and then returns to
the calling node, reexecuting the interrupted collection action.
In order to give more flexibility to the designer for a fme-tuning
of the prompts (e.g. in the example, the re-prompting for the
transfer amount differs from the original prompt), the node exe-
cution function can detect whether a return from a GOSUB
shortcut is in effect.

0-7803-7343-X/02/$I7.00 0 2002 IEEE 245

4. USER INTERFACE PATTERNS

There are certain recurrent interface patterns that appear, or are
likely to appear, in many different dialog systems Some of them
can be considered universal patterns. Examples of those are
back-up, startuver, repeat, main-menu. Theu meaning is obvi-
ous in most dialog contexts, and they start to assume the quality
of univ-l navigation commands. There is a strong analogy
between these UI universals and the universal conunands we
expect to find in any properly designed desktop application,
such as rhe File and Edit menus, the Undo command, Help, etc.
Often, when some of the commands do not make sense in some
part of the application they are still there in a disabled form
(e.g. grayed out). Similarly, as spoken dialog applications be-
wme more and more pervasive and uhiquitous, and more and
more usen become accustomed to them, it will become natural
to expect certain commands to be ulwqs available, such as
back-up (which is analogous lo the undo command in desktop
applications), help, etc.'

There is another class of UI pattems that recur in many applica-
tions, but only in certain situations or in certain parts of some
applications. The universal quality of these UI pattern is not in
their presence at any point of the dialog, but in their use. For
instance, let's consider list navigation. Depending on the kind of
functionality of the list (e.g. selection, editing, etc.), the naviga-
tion follows certain predetermined ptlems (e.g. Say next, pre-
vious or .%t one). In the desktop analogy, these patterns can be
associated, for instance, with the procedures for opening and
saving files, which are the same from application to application.

However, all these patterns may differ from application to appli-
cation and from implementation to implementation. A universal
consistency a m s s applications and across implementations is
desirable for several rfasons. One of the main reasons is that
consistency of UI patterns can help users I- how ta use s p -
ken dialog systems independently of the application[5], thus
increasing the overall transaction completion ratKS, the caller's
population acceptance of the spoken dialog technology, and the
overdll user satisfaction.

One way to guarantee and encourage consistency of the UI pat.
terns across applications and implementations consists in em-
beddii the underlying logic in the dialog manager engine. Con-
sidenng also that the implementation of some of these patterns
may be quite wmplex, a dialog manager engine that includes
the most common UI patterns can be highly beneficial also to
the reduction of the desigddevelopment cost of complex appli-
cations.

5. U1 UNIVERSALS IMPLEMENTATION
ISSUES

UI universals are defined as properties of collection dialog
nodes (i.e. a dialog nodes lhat are associated with a collection

' W we did observe instances of users saying Muin Menu in
applications where a main menu was not even defmed or an-
nounced.

action). If a dialog node allows a certain UI univers+l wmmand,
then the associated command word (e.g. buck-up) and its sync-

a DOTRANSFE

MAIN dialog BALANCE dialog

TRANSFER dialog
Figure 1: Simplified example of structured dialog

nyms must be included in the gmmmar used by the collection
action of that node. The ETUDE dialog manager does that
automatically during the initialization phase. In order to keep
the consistency of the interface, different levels of activation of
universal commands can be specified for each collection node.
In our implementation we have three levels of activation: en-
ubled. correspondmg to full functionality of the command, uc-
knowledged, the wmmand is recognized, but a prompt is played
waming that the command is not active - analogous to the gray-
ingout of features in desktop applications, and disabled, the
command is not recognized.

Let's a n a l p in more details two UI universals: back-up and
repeat.

The back-up wmmand implements the undo feature for voice-
based systems as in thr following example:

S: This is the bonking application. Do you w n t account bo/-
unce or to muke c1 mnsfer?
U: Make a fmnsfer.
S: Which uccounf do you w n t to m s f e r from? Checking or
swings?
U: S w i n g s
S: What amount do you wont to transfer from your savings?
U: Five hundred dollun
S: Do you wont to rmnsferfive hundred dollars from suvings to
checking?
U: back-up
S: What amount do you want to fmnsfeer from your swings LIC-

COU"t?

U: buck-up
S: Which account do you want to mms/er/rom? Checking or
suvings?

In order to define the correct operation for back-up, it is neces
sary to define not only whch nodes would accept the back-up
commands, but also which node to back-up to. Of course the
node to back-up to m o t be determined statically for any given
collection node, since it depends on how the dialog evolved up
to that point. Morwver, once a back-up is performed, the frame,

0-7803-7343-W02/S17.00 Q 2002 IEEE 246

i.e. the set of all session variables, must be reverted to the pre-
vious configuration (undo function). The back-up command is
based on the concept of back-up onckor. A node that is defmed
as a back-up anchor is a node to return to when, successively in
the dialog, the caller issues a backup command.

A back-up slack is kept in the sffsion frame. Once a back-up
anchor node is visited during the course of a dialog session, a
new stack element is created including a copy of the c w n t
frame and a reference to the backup anchor node. The element is
then pushed into the stack.

Once the user issues a back-up command during a dialog ses
sion, then the element at the top of the back-up stack is re-
trieved with a pop operation. The dialog manager then perfom
a transition to the back-up anchor node and restores the h e .

A back-up node may not be in the same dialog as the node v i s
ited when the back-up command was issued. Hence the tmnsi-
tion to the back-up anchor has to be performed through a GOT0
shortcut.

A mechanism similar to back-up can be implemented for the
commands StilItover and main-menu. In that case there is no
need to keep a stack, but only one anchor and the related fmme
are kept for each session.

Similarly to the back-up command, the repeat command needs a
repeat anchor to be defined. Once a node which is defmed as a
repeat anchor is visited, a pointer to that node is kept at a par-
ticular location in the current fmme. When the user invokes the
repeat command while a node activated for repeat is being vis-
ited, all the output nodes (i.e. the nodes assaciated with an out-
put or prompting action) between the repal anchor and the
current node are executed by the dialog manager.

Examples of other common UI univmals which logic can be
included in the execution algorithm of a dialog are those ~ r r e -
spanding to commands such as operator. ckange-language,and
global navigation commands. Global navigation consists in hav-
ing the initial nodes of brdnchrs of sub dialogs announce them-
selves with a special prompt (e.g. <earcon> Account Balance)
and allowing the user to issue commands such as “GO IO ac-
count balance”) at any point in the dialog.

6. SUMMARY

We presented in this paper the concept of a dialog manager that
suppolis a recursive d e f ~ t i o n of the dialog flow. The dialog
flow abstmction is presented in detail. In addition we described
the concept of UI patterns, i.e. those patterns that typically a p
pear in most dialog systems. Some of these patterns can be de-
fmed as universals, meaning that their presence is expected at
any point in the dialog and would improve the usability of the
system. We dwribed how the logic of some of the UI univer-
sals can be embedded into the dialog manager engine, both
helping encourage the intrcdwtion of the 111 patterns across
different application and reducing the cost of developing com-
plex applications.

The authors wish to thank Stephen Springer (Speechworks
International) for his help with the definition of the UI patterns

111

121

131

141

151

161

7. REFERENCES

and Anibal Jodorcovsky (currently with lntelerad Medical Sys-
tems) for his help with lhe initial implementation of ETUDE^

P. Constantinides, S. Hansma,, C. Tchou,, A.Rudnicky, “A
schema-based approach to dialog contml,” in Proceedings
of ICSLP. 1998, Paper 637.
D. Stallard, “Talk’n’Travel: A Conversational System for
Air Travel Planning,” in Proceedings of the Association for
Compuk%tional Linguistics 6& Applied Natural Language
Processing Confem~ce (ANLP 2000). Seattle, Washington,
April 29 -May 4,2000, pp. 68-75
R. Pieraccini, E. Levin, W. Eck- “AMICA: the AT&T
Mued Initiative Conversational Architecture,” in Proceed-
ings ofEUROSPEECH 97, Rhcdes, Greece, Sept. 1997.
S. Seneif, J. Polifroni, “Dialogue h4anagement in the Mer-
cury Flight Reservation System,’’ presented at Satellite
Dialogue Workshop, ANLP-NAACL, Seattle, April 20M)
S.Shriver, A. Toth, X. Zhu, A. Rudnicky, R. Roseufeld. “A
Unified Design for HumareMachme Voice Intemctiou,” in
Pmceedmgs of CHI 2001.
E. Bamard, A. Halberstadt, C. Kotelly, M. Phillips, “A
Consistent Approach To Oesigning Spokendialog Syc
terns,” in Proceedings of the Automatic Spenh Recognition
and Understanding Workshop, Keystone, Colorado, De-
cember 1999.

0-7803-7343-X/02/$17.00 Q 2002 IEEE 247

