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Graphs are used to model complex data objects and their relationships in the real world. Finding occur-
rences of graph patterns in large graphs is one of the fundamental graph analysis tools used to discover
underlying characteristics from these complex networks. In this paper, we propose a new tree-based
approach for improving subgraph-matching performance. First, we introduce a new graph indexing
mechanism known as Neighborhood Trees (NTree), which records the neighborhood relationships of
each vertex in the large graph to filter negative vertices. Second, we decompose a query graph into a
set of neighborhood trees and only a subset of candidate trees, which can properly recover the original
query graph. In this way, the tree-at-a-time method is used to obtain the matched graphs. Third, we
employ a graph query optimizer to determine the neighborhood tree selection order on the basis of
the cost evaluation of tree join operations. Experiments on both real and synthetic databases demon-
strate that our approach is more efficient than other state-of-the-art indexing methods.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Graphs are used to model many complex data objects and their
relationships in the real world. In recent years, an increasing num-
ber of large networks such as social networks, chemical com-
pounds, semantic web, and protein networks have appeared. The
sizes of these large graphs can be in excess of millions of vertices
and edges. Methods for managing, processing, and analyzing these
graph data have become important research topics. Finding the
occurrences of graph patterns or subgraphs in large graphs is one
of the fundamental uses for graph analysis tools because they
denote underlying characteristics in complex networks. Subgraph
query or matching approaches have been widely used in areas such
as chemical informatics [1], proteins analysis [2], biochemistry [3],
web applications [4], and computer vision [5]. For example, given a
large protein network, biologists may want to determine all occur-
rences of structural motifs in 3D proteins by using protein contact
maps [6].

Graph searching is an important task in a variety of applications
and falls under two scenarios: subgraph querying and subgraph
matching. The classical graph-querying problem is to find all
supergraphs of the query pattern from a graph database, whereas
graph matching involves finding all subgraphs of the database
graph, which are isomorphic to the query graph. It is clearly ineffi-
cient to perform an exhaustive search in the database because the
subgraph isomorphism itself is a non-deterministic polynomial
time (NP)-complete problem.

Graph indexing is a common technique for performing searches
in large graph databases. Many indexing mechanisms such as gIn-
dex [7], Tree+D [8], TreePi [9], FERRARI [10], and frequent subgraph
(FG)-index [11] have been developed for subgraph querying pro-
cesses. In these approaches, frequent features are extracted from
graphs and are leveraged to build graph indices. As a result, expen-
sive preprocessing is required due to the frequent pattern mining
processes in index construction such as paths, trees, and sub-
graphs. In addition, non-mining based techniques, such as Clo-
sure-tree [12], GCoding [13], LnGCoding [14], and GiS [15], have
been proposed for graph queries. For the purpose of indexing,
structural information of graphs are mapped into graph signatures
such as numerical space in GCoding or line graphs in GiS. However,
such indexing was developed mainly for searching graphs in a
large number of small graphs.

To solve the problem of graph matching in a large graph, neigh-
borhood signature-based techniques such as GraphQL [16], SPath
[17], and GADDI [18] have been proposed. In GraphQL [16], profiles
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around a vertex neighborhood are used for local pruning, and
global structural information is leveraged to simultaneously
reduce the overall search space. In SPath [17], the shortest paths
around a vertex neighborhood are leveraged as basic indexing
units, and a more efficient path-at-a-time method is introduced
to process graph queries. In GADDI [18], neighboring discriminat-
ing substructure (NDS) distance measurement is adopted as the
basis of the pruning method, and an index-based graph matching
method is proposed for achieving high pruning power and linear
size scales. To reduce search space, the cost model and query plan
optimizer are both employed in these up-to-date approaches.
However, when using neighborhood profiles or paths as indexing
units to prune negative vertices, structural information around
the vertices may be lost. As a result, false positive vertices remain
as candidates and require further filtering. Moreover, too many
join operations are required compared with more complex
structures such as trees or subgraphs.

In this paper, we propose a new tree-based approach for
improving subgraph searching performance. First, we introduce a
new graph-indexing mechanism known as Neighborhood Trees
(NTree), which records the neighborhood relationships of each
vertex in the large graph to filter negative vertices. Because trees
contain more information than paths or vertex profiles, the NTree
has stronger pruning power. Second, we decompose a query graph
into a set of trees, and only a subset of candidate subtrees that can
properly recover the original query graph are selected. These
candidate subtrees are then joined to reconstruct the query graph.
In this way, the tree-at-a-time method is used to obtain the
matched graphs. Third, we employ a graph query optimizer to
determine the vertex searching order on the basis of the cost eval-
uation of tree joining operations. Our work has the following
contributions:

1. We propose a structural pattern-based graph-matching frame-
work. First, candidate vertices are identified. Then, a joining
process by comparing relationships of candidate vertices in
the large graph to the original query graph is used to further
verify these candidates. Both vertex pruning and query recon-
structing abilities of different structural patterns such as neigh-
borhood paths, trees, and graphs are evaluated. As a result,
neighborhood trees are selected to be the most feasible
candidates (Section 3).

2. To reduce the number of candidates, we propose a new cost-
effective graph indexing technique, NTree, which makes use
of trees around the vertex neighborhood for pruning purposes.
Canonical unordered trees are leveraged, and the string com-
parison technique is used to accelerate the subtree containment
process (Section 4).

3. To address the second step, we propose an efficient searching
method for joining the neighborhood trees and reconstructing
the original query graph. In addition, we design a graph query
cost model on the problem of neighborhood tree selection to
optimize the search order (Section 5).

4. We conduct extensive experiments by using both real and syn-
thetic databases. We compare our indexing method, NTree,
with state-of-the-art path-based indexing methods. The results
show that our method outperforms these indexing methods in
terms of graph matching performance (Section 6).

2. Related works

The subgraph isomorphism test [19,20,5,21] is a well-known
NP-complete problem that has been widely studied in recent
years. For subgraph searching, a large number of index-based
graph matching and searching frameworks have been proposed
including gIndex [7], TreePi [9], FG-index [11], NB-index [22],
LW-index [23], Tree+D [8], GCode [13], GPTree [24], Closure-tree
[12], Turboiso [25], SODA [26], SING [27], and GiS [15]. These
graph-indexing approaches have been designed mainly for per-
forming subgraph querying from a graph database consisting
of many small- or medium-sized graphs. Most of these indexing
approaches such as gIndex [7], Tree+D [8], and FG-index [11] all
make use of frequent patterns in the graph database as the
basic indexing structure. Consequently, expensive preprocessing
is required to mine frequent patterns when constructing graph
indices. The encoding method GCode [13] assigns a signature
known as level-n path tree to each vertex based on its local
structures. As a result, graph codes are obtained by combining
all vertex signatures. SING [27] uses the concept of features
and makes use of feature locality information. gStore [28] trans-
forms a Resource Description Framework (RDF) graph into a
data signature graph and uses the vertex signature (VS)*-tree
index with light maintenance overhead. A filtering rule in gStore
is also developed for answering exact SPARQL queries in a uni-
form manner. In this paper, a different encoding scheme is
introduced. We make use of the level-wise signature that
records the neighborhood edge to construct the neighborhood
tree as the graph index. Neighborhood vertices arranged in the
form of rings are recorded as well as the occurring number of
edges in each level.

To address the inexact matching problem, Grafil [29] clusters
features according to their selectivities and applies a multi-filter
strategy. Edge deletions are transformed into feature misses,
and an upper bound is used on the maximum number of allowed
feature misses for graph filtering. Zhu et al. [30] proposed a novel
search paradigm, TreeSpan, to conduct similarity all-matching
that conforms a similarity threshold h by first conducting exact
all-matching on a minimal set of spanning trees. A rigid theoretic
analysis shows that this approach can significantly reduce the
time required for conducting exact all-matching compared with
the existing techniques. In SAGA [31], Tian et al. proposed a more
flexible indexing approach that can support both vertex insertions
and deletions. A flexible graph distance model is employed to
measure similarities between graphs, and matched fragments
are assembled into large matches. However, in this similar graph
searching approach, only a subset of approximate matching
results is obtained. Ness [32] is another tool for inexact matching
that focuses on the top� k approximate matches. In this method,
a neighborhood-based similarity measure is proposed that avoids
costly graph isomorphisms and edits distance computation. SLQ
[33] is a framework enabling schemaless and structureless graph
query that can automatically learn an effective ranking model
with no manual preprocessing. This method returns matches by
using graph sketches and belief propagation. The simB method
[34] is proposed for edit distance-based similarity search
problems, whereby a lower bound based on the branch structure
is proposed to reduce the search space, and the b-tree index is
adopted to facilitate the query processing. GSimSearch [35] is
another efficient algorithm for graph similarity query. Unlike
the simB method, GSimSearch exploits the number of common
fixed-length paths between pairs of graphs and also adopts
degree-associated structural information to enhance runtime
performance.

In addition to the searching subgraph problem from a large
number of small graphs, methods used to search a subgraph in
a large graph such as a social network are also addressed
[16,17,36,37,18,38,39]. Several up-to-date approaches such as
GraphQL [16], SPath [17], and GADDI [18] are proposed to obtain
all occurrences of a query in a large graph. In GraphQL [16],
neighborhood profiles are first employed to prune vertices
individually. Then, the overall search space by considering all ver-
tices in the pattern is simultaneously reduced. In SPath [17],
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neighborhood signatures of vertices are used for vertex filtering.
The decomposed shortest paths are considered as patterns to be
joined, and the path-at-a-time method for graph matching is
proposed. In GADDI [18], the NDS distance between pairs of
neighboring vertices that satisfies the inequality property is
indexed. Furthermore, the GADDI method also applies two-way
pruning and incorporates a dynamic matching scheme. Sun
et al. [37] used efficient in-memory graph exploration and mas-
sive parallel computing for subgraph matching rather than
super-linear indices. Huang et al. [39] introduced two optimiza-
tion frameworks based on dynamic programming and cycle
detection for distributed graph pattern matching and also
proposed a computation reuse technique to eliminate redundant
subgraph pattern matching.

3. Preliminaries

In this section, we first provide basic definitions of graphs and
outline the structural pattern-based algorithmic framework to
address the graph matching problem. We then present a cost eval-
uation model upon which our analysis of different neighborhood
patterns for graph indexing is based.

3.1. Problem statement

Definition 1 (Graph). A graph G ¼ ðV ; E;R; lÞ is defined as an
undirected labeled graph where V is a set of vertices, E is a set of
edges between vertices, R is a set of vertex labels, and l is a labeling
function that defines the mapping l : V ! R.
Definition 2 (Subgraph Isomorphism). A graph G is subgraph iso-
morphic to a graph G0, iff there exists an injective function
f : VðGÞ ! VðG0Þ, such that (1) 8u 2 VðGÞ; lðuÞ ¼ l0ðf ðuÞÞ and (2)
8ðu;vÞ 2 EðGÞ; ðf ðuÞ; f ðvÞÞ 2 EðG0Þ, where l and l0 are the label func-
tions of G and G0.

If there exists a subgraph isomorphism from G to G0, then G is
called a subgraph of G0, denoted as G # G0. The injective function f
is considered as a match of G in G0, and an occurrence of G is
obtained in G0.

Graph matching problem: Given large graph G and query graph
Q, we aim to discover an injective mapping set F such that each
element f 2 F is an injective function, which represents that query
graph Q is a subgraph isomorphic to graph G:

F : Q ! Q 0 # G :¼ ff jf : VðQÞ ) VðQ 0ÞðQuery graph Q is

subgraph isomorphic to graph GÞ;8u 2 VðQÞ ^ 9v 2 VðQ 0Þg;
ð1Þ

where graph Q 0 is a subgraph of graph G and satisfies bijective
mapping from query graph Q to graph Q 0, which is a subgraph
isomorphic to graphs Q and G.

The graph matching problem is to find all occurrences of query
graph Q in the large graph G. The formal representation is

H :¼ fgj8g ¼ Q 0 # G; satisfy injective functions F : Q ! Q 0g; ð2Þ

where H contains all of the subgraphs from graph G, which are
subgraphs isomorphic to query graph Q.
Example 3.1. Fig. 1 illustrates a large graph G and a query graph Q.
Numeric identifiers are used to distinguish vertices and edges,
whereas capital letters are used to represent various types of
vertex labels. The subgraph S of G colored in gray with vertices
VðSÞ ¼ f9;8;7;6;5;14;10g is a matching of Q in G. Consequently, Q
is a subgraph isomorphic to G, and we have Q # G. In some cases,
there may exist several occurrences of Q in G. For example, if a
query Q 0 is a triangle graph with vertices VðQ 0Þ ¼ f1;2;3g,
then graphs with vertices f5;2;4g; f5;4;2g; f9;7;8g; f9;8;7g;
f11;12;13g, and f11;13;12g are all matching results.
3.2. Pattern-based algorithmic framework

Definition 3 (Neighborhood Pattern). Given graph G, vertex u in G,
and radius r, the neighborhood pattern p of node u that presents
the neighborhood signature by vertices within r hops away from u
is denoted as pr

GðuÞ. A neighborhood path of G is a path with r hops
from the node u. A neighborhood tree of G consists of all of the
longest paths starting from u with distances no more than r. A
neighborhood subgraph of G is constructed by all vertices within r
hops away from u.
Example 3.2. Fig. 2 shows three different neighborhood patterns
of vertex u1 in query Q. The neighborhood subgraph contains more
structural information compared with the other structural pat-
terns. It should be noted that for a neighborhood path and tree of
the same vertex, different patterns may exist.
Definition 4 (Effective Neighborhood Pattern). Given large graph G,
query graph Q, and radius r;Q is a subgraph isomorphic to G with
mapping f if there exists a neighborhood pattern p. Then, we have
8u 2 VðQÞ; pr

Q ðuÞ# pr
Gðf ðuÞÞ, where f ðuÞ 2 G. This neighborhood pat-

tern is considered effective and can be leveraged to prune negative
vertices.
Example 3.3. If a neighborhood subgraph of G consists of all verti-
ces within distance r and all edges between the vertices, then it
appears to be an ideal neighborhood pattern. Fig. 2(c) shows a
neighborhood-induced subgraph NGraph of vertex u1, which pre-
serves local structural information. However, because the neigh-
borhood subgraph has the ability of recording maximum graph
information, it is rarely used to compute the graph containment
relationship. As a result, the neighborhood subgraph is not suitable
for indexing.
Definition 5 (Candidate Vertices). Given graph G, query Q, vertex
u 2 VðQÞ, radius r, and neighborhood pattern p, the candidate ver-
tices of u is the set of vertices in G that satisfies the neighborhood
pattern /u:

CðuÞ ¼ fv jv 2 VðGÞ;/uðvÞ ¼ trueg; ð3Þ

where /uðvÞ means pr
Q ðuÞ# pr

GðvÞ. All matched neighborhood pat-
terns in G for u are defined as

Cðpr
Q ðuÞÞ ¼ fpr

GðvÞjpr
GðvÞ# G;v 2 CðuÞg: ð4Þ
Example 3.4. As previously stated, Fig. 2(c) is a neighborhood sub-
graph of vertex u1 in Q. By using the neighborhood subgraph as the
matching predicate, we obtain the neighborhood patterns of vertex
u1 in Q {(9,8,7,6,10)} in G, and we also can compute the candidate
set with {9} in G for vertex u1 in Q.

To speed up graph matching, we can index neighborhood pat-
terns of vertices for fast retrieval of candidate vertices in G. As a
result, sequential scan of all vertices in a large graph is avoided.
In Algorithm 1, we present the overall procedure of graph
matching by using the neighborhood patterns.



Fig. 1. A large graph G and a query graph Q.
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Algorithm 1. GraphMatching
Input: A large graph G, A query graph Q, A nonnegative radius
r;

Output: All feasible matchings f Q ðGÞ;

1:
 for all vertex u 2 VðQÞ do

2:
 Generate neighborhood pattern pr

Q ðuÞ for vertex u;

3:
 CðuÞ  fvjv 2 VðGÞ;/uðvÞ ¼ trueg;

4:
 Obtain all Cðpr

Q ðuÞÞ  fpr
GðvÞjpr

GðvÞ# G;v 2 CðuÞg;

5:
 end for

6:
 P  £;
Fig. 2. Different neighborhood patterns of vertex u1 in query Q.
7:
 Recursive_Match(P);

8:

9:
 void Recursive_Match(P)
10:
 begin

11:
 Select an unvisited vertex u 2 VðQÞ has been covered by

P with minimum cost and marked u as visited

12:
 for all pr

GðvÞ 2 Cðpr
Q ðuÞÞ do
13:
 if not Joinable(ðpr
Q ðuÞ; pr

GðvÞÞ; P) then

14:
 continue;

15:
 end if

16:
 P  P [ fðpr

Q ðuÞ; pr
GðvÞÞg;
17:
 if 8e 2 EðQÞ has been covered by P then

18:
 Report f Q ðGÞ  fpr

GðvÞjðpr
Q ðuÞ; pr

GðvÞÞ 2 Pg;

19:
 else

20:
 Recursive_Match(P);

21:
 end if

22:
 P  P � fðpr

Q ðuÞ; pr
GðvÞÞg;
23:
 end for

24:
 end

25:

26:
 boolean Joinable(ðpr

Q ðuÞ; pr
GðvÞÞ; P)
27:
 begin

28:
 for all ðpr

Q ðu0Þ; pr
Gðv 0ÞÞ 2 P do
29:
 if pr
Q ðuÞ and pr

Q ðu0Þ are joinable, while pr
GðvÞ and pr

Gðv 0Þ
are not based on the same join predicate then
30:
 return false;

31:
 end if

32:
 end for

33:
 return true;

34:
 end
The algorithm consists of two phases. In the first phase (Lines
1–7), all candidates for each vertex of Q are retrieved by using
the neighborhood pattern as the filtering condition. In addition,
all neighborhood patterns of candidate vertices are computed. In
the second phase (Lines 9–34), depth-first matching is performed
to obtain all occurrences of Q in G with the search space of all
QL
i¼1jCðpr

Q ðuiÞÞj, where L is the number of visited vertices during the
matching space, and Cðpr

Q ðuiÞÞ is the set of matched neighborhood
patterns in G. Therefore, a small L and fewer matched
neighborhood patterns will make the search space smaller. In Sec-
tion 3.3, a detailed discussion on the selection of neighborhood
patterns is given.

For each iteration of Recursive_Match, an unvisited node u is
first selected on the basis of the cost model (Line 11). Then, for each
neighborhood pattern pr

GðvÞ, a join operation is performed with all
previously visited patterns. If they are joinable, then a deep match-
ing process is performed (Lines 16–21). Otherwise, joining
operations on the next neighborhood pattern will continue (Lines
13–15). This procedure is repeated until all edges in Q have been
covered by all of the discovered patterns in G. Consequently, injec-
tive mappings from Q to G appear, which is a result of matching
(Lines 17–18). The possibility of the join operation is checked in
the joinable function (Lines 26–34). If two neighborhood patterns
in the query are joinable and their corresponding matched neigh-
borhood patterns are not, then a failure of join process occurs.
3.3. Evaluation of neighborhood pattern

In this section, we evaluate the cost of performing the graph
matching process shown in Algorithm 1. The cost of processing a
graph matching query Q against G, denoted as C, can be modeled
as the combination of vertex filtering cost for candidate pruning
and pattern joining cost for query reconstruction:

C ¼ Cf þ Cj: ð5Þ

Here, Cf is the cost for filtering based on Eq. (1) in the candidate ver-
tices generation phase, and Cj is the cost of pattern joining in the
recursive matching phase.

For the first part, the vertex filtering cost is defined as
Cf ¼ jVðQÞj�jVðGÞj�Csubiso

jRj , where Csubiso is the cost of subpattern isomor-
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phism. For simplicity, we assume that the vertex labels of the large
graph G are evenly distributed, such that for each vertex in Q, the
number of vertices with the same label is jVðGÞjjRj .

For the second part, the pattern joining cost Cj is defined as

Cj ¼
QL

i¼1jCðpr
Q ðuiÞÞj � Csubjoin, where Csubjoin is an average cost of

the join operations on the new neighborhood pattern with all dis-
covered patterns.

The key issue to improve the matching performance is to mini-
mize Csubiso; L;Cðpr

Q ðuiÞÞ, and Csubjoin. Intuitively, L and Cðpr
Q ðuiÞÞ will

be minimized if we employ neighborhood subgraphs as neighbor-
hood patterns and index all neighborhood subgraphs of vertices
in G. However, this measure is not feasible because subgraph iso-
morphism Csubiso, which is proved to be NP-complete, will incur a
large computation overhead, whereas containment testing of trees
requires polynomial time only [40]. That is, using the neighborhood
subgraph will dramatically increase the total cost of Cj.

On the contrary, we can use the path to filter negative vertices
and recover the original query graph. Although the cost of con-
tainment testing Csubiso is reduced, the numbers of L and
Cðpr

Q ðuiÞÞ will increase quickly. Moreover, neighborhood paths
have weaker filtering and recovering abilities compared with
trees and graphs. As a result, the search space of matching is dra-
matically increased. In particular, when the radius r is set to zero,
which means neighborhood information is not used, an exhaus-
tive search occurs. In this way, the search space of graph match-
ing is

QjVðQÞj
i¼1 jCðuiÞÞj. Therefore, a pattern with both higher pruning

power and quick containment testing is considered to be an ideal
indexing object.

Based on the analysis mentioned above, we have drawn the fol-
lowing conclusion with respect to the structural neighborhood pat-
tern: We should choose neighborhood trees to index the vertices in
G to record the neighborhood information of the vertices. However,
when using neighborhood trees as patterns, we still need to solve
the following three problems: (1) how to make the neighborhood
tree an effective neighborhood pattern, (2) how to quickly perform
tree containment testing and tree join testing, and (3) how to select
the initial neighborhood trees to recover the query. Details on tech-
niques for resolving these problems will be addressed in subse-
quent sections.

4. Neighborhood tree index

In this section, we study an effective neighborhood pattern
known as neighborhood tree. To quickly prune negative vertices,
the level-wise signature that records the neighborhood edge infor-
mation is first proposed. Then, the neighborhood tree-indexing
schema based on the level-wise signature is presented. A tree-
encoding scheme is proposed for fast tree containment testing
and memory saving. In addition, index construction of
neighborhood trees is described.

4.1. Neighborhood tree

Definition 6 (d-Level Vertex Set). Given u 2 VðGÞ, a nonnegative
distance d, the d-level vertex set, denoted as Vðu; dÞ, is defined as

Vðu; dÞ ¼ fv jhopðu;vÞ ¼ d;v 2 VðGÞg; ð6Þ

where hopðu; vÞ is the number of hops away from u.
Definition 7 (d-Distance Same Level Edge Set). Given u 2 VðGÞ, a
nonnegative distance d, the d-distance same level edge set,
denoted as ESðu; dÞ, is defined as
ESðu;dÞ ¼ fðv ;wÞjðv ;wÞ 2 EðGÞ; v 2 Vðu;dÞ;w 2 Vðu;dÞg: ð7Þ
Definition 8 (d-Distance Adjacent Level Edge Set). Given u 2 VðGÞ, a
nonnegative distance d, the d-distance adjacent level edge set,
denoted as EAðu; dÞ, is defined as

EAðu;dÞ ¼ fðv ;wÞjðv ;wÞ 2 EðGÞ; v 2 Vðu;d� 1Þ;w 2 Vðu;dÞg: ð8Þ
Definition 9 (Level-wise Signature). Given u 2 VðGÞ and radius r,
the level-wise signature of u, denoted as LSðu; rÞ, is defined as

LSðu; rÞ ¼ fESðu; dÞj1 6 d 6 rg [ fEAðu; dÞj1 6 d 6 rg: ð9Þ

It should be noted that ESðu; dÞ; EAðu; dÞ, and LSðu; rÞ are all
multisets.
Example 4.1. We categorize the neighborhood vertices into rings
according to the distances. In Fig. 3, neighborhood vertices
arranged in the form of rings are presented for vertices v9 and v5

in G and vertex u1 in Q. Their corresponding level-wise signatures
are presented in Table 1. For vertex v5 in G, the two-distance
adjacent level edge set is EAðv5;2Þ ¼ fðB� C : 1Þ; ðB� D : 3Þ;
ðC � D : 1Þg. This set indicates that edge B� D occurs three times
from vertices in the one-level set to those in the two-level set. The
two-distance same-level edge set ESðv5;2Þ ¼ fðB� B : 1Þg.
Theorem 1. Assume Q is subgraph isomorphic to G with mapping f;
then, 8u 2 VðQÞ, and we have 8r P 0;

S
E2LSðu;rÞE #

S
E2LSðf ðuÞ;rÞE.
Proof. According to our definition,
S

E2LSðu;rÞE. That is,
S

d6rESðu; dÞ[
EAðu; dÞ represents all neighborhood edges within r-distance from
u. Because Q # G, the neighborhood edge set of u should be
contained by the neighborhood edge set of f ðuÞ. Therefore, we have
8r P 0;

S
E2LSðu;rÞE #

S
E2LSðf ðuÞ;rÞE. h

This pruning technique using neighborhood information is sim-
ilar to the method of neighborhood signature (NS)-containment
presented in SPath. Although the NS-containment method employs
the profiles of neighborhood vertices as the pruning condition, we
further employ level-wise edges that have more powerful pruning
abilities.

Example 4.2. When setting r ¼ 2, for vertex u1 shown in Fig. 3(c)
and its level-wise signature presented in Table 1, we haveS

E2LSðu1 ;2ÞE ¼ fðA� B : 2Þ; ðB� B : 1Þ; ðB� C : 1Þ; ðB� D : 1Þg. For
vertex v9 shown in Fig. 3(a), we have

S
E2LSðv9 ;2ÞE ¼ fðA� B : 2Þ;

ðA� C : 1Þ; ðB� B : 1Þ; ðB� C : 2Þ; ðB� D : 2Þg. From Theorem 1, we
quickly compute that

S
E2LSðu1 ;2Þ#

S
E2LSðv9;2Þ and verify that it is a

candidate for u1. Accordingly, v5 is also a candidate for u1. Although
vertices v11 and v16 have the same labels as u1, they are not
candidates. For vertex v11, we have

S
E2LSðu1 ;2Þ�

S
E2LSðv11 ;2Þ. The same

is true for vertex v16. By using this filtering approach, the search

space
Q6

i¼1jCðuiÞj is dramatically reduced from 18,432 to 432 for
query Q against graph G.

However, the level-wise signature method is still not powerful
enough to prune some false positive candidates. We know that
SPath uses a path-based graph-indexing mechanism for large net-
works [17]. However, some edge information will be lost after
transforming a graph into several paths in the SPath method. We
take Fig. 1 as an example to illustrate that SPath may result in false
positives. In Fig. 1(b), three paths are given in query graph Q:
v1ðAÞ � v2ðBÞ � v4ðDÞ � v6ðCÞ;v1ðAÞ � v2ðBÞ � v4ðDÞ � v5ðAÞ, and
v1ðAÞ � v3ðBÞ � v7ðCÞ. It should be noted that these numbers are
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Fig. 5. Neighborhood tree index.

Fig. 4. Neighborhood trees for different vertices with r ¼ 2.

Fig. 3. Neighborhood vertices arranged in the form of rings.

Table 1
Level-wise signatures for three different vertices with label A (r ¼ 2).

Level Neighborhood edges (v5 in G) Neighborhood edges (v9 in G) Neighborhood edges (u1 in Q)

0–1 {(A-B:2), (A-C:1), (A-D:1)} {(A-B:2), (A-C:1)} {(A-B:2)}
1–1 {(B-B:1), (B-C:1), (C-D:1)} {(B-B:1), (B-C:1)} {(B-B:1)}
1–2 {(B-C:1), (B-D:3), (C-D:1)} {(B-D:2), (B-C:1)} {(B-C:1), (B-D;1)}
2–2 {(B-B:1)} {} {}
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Fig. 6. Index construction for real dataset.

Table 2
Dataset and query set characteristics of the yeast protein interaction network.

Data (query) Set size Average vertex number Average edge number Average degree Memory store (KB)

Real dataset 1 5657 37,221 13 514
Path query set 9000 6 5 1.7 2574
Clique query set 6000 4.5 9.5 4.2 2352
Normal query set 9000 6 11.7 3.9 3468
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vertex identifiers in graph Q, whereas the uppercase letters inside
the parentheses represent vertex labels in path representation.
After conducting the query in graph G by using the above
condition, we have three results:

1. Path 1: v5ðAÞ � v2ðBÞ � v15ðDÞ � v1ðCÞ,
Path 2: v5ðAÞ � v2ðBÞ � v15ðDÞ � v16ðAÞ,
Path 3: v5ðAÞ � v2ðBÞ � v3ðCÞ;

2. Path 1: v9ðAÞ � v7ðBÞ � v6ðDÞ � v14ðCÞ,
Path 2: v9ðAÞ � v7ðBÞ � v6ðDÞ � v5ðAÞ,
Path 3: v9ðAÞ � v7ðBÞ � v10ðCÞ;

3. Path 1: v9ðAÞ � v8ðBÞ � v6ðDÞ � v14ðCÞ,
Path 2: v9ðAÞ � v8ðBÞ � v6ðDÞ � v5ðAÞ,
Path 3: v9ðAÞ � v7ðBÞ � v10ðCÞ.

It should be noted that these numbers are vertex identifiers in
graph G, whereas the uppercase letters inside the parentheses
represent vertex labels in path representation. According to
Theorem 1, both vertices v5 and v9 are considered as candidate
mapping vertices for u1. Obviously, the No. 3 result is the correct
query result for graph Q, and the others are false positive results.
However, by using a more powerful pruning technique such as
neighborhood tree, we can further discard these two false positive
results.

Definition 10 (Neighborhood Tree). Given graph G, vertex v, and
radius r, a neighborhood tree tr

GðvÞ of G is consists of all of the
longest paths starting from v with distances of no more than r. All
edges in the neighborhood are denoted as Eðtr

GðvÞÞ.
Theorem 2. Neighborhood tree is an effective neighborhood pattern.
That is, given large graph G, query graph Q, and radius r, if Q is a
subgraph isomorphic to G with mapping f, then 8u 2 VðQÞ;
tr

Q ðuÞ# tr
Gðf ðuÞÞ.
Proof. Given an arbitrary vertex u1 2 VðQÞ, suppose there is a path
ðu1; . . . ;ukÞ 2 tr

Q ðu1Þ starting from u1. Because Q # G, there must
exists a series of vertices f ðu1Þ; . . . ; f ðukÞ mapped by u1; . . . ;uk.
Then, a path ðf ðu1Þ; . . . ; f ðukÞÞ 2 tr

Gðf ðuÞÞ is found. This indicates that
every path in tr

Q ðu1Þ has a corresponding mapping path in tr
Gðf ðuÞÞ,

and tr
Q ðu1Þ# tr

Gðf ðu1ÞÞ satisfies the condition. Therefore, neighbor-
hood tree is considered to be an effective neighborhood
pattern. h
Example 4.3. Fig. 4 shows three different neighborhood trees for
all vertices with label A. Because the neighborhood tree of v5 does
not contain a substructure of the neighborhood tree of u1;v5

should be pruned. Vertex v9 is a candidate of u1 because the sub-
structure of its neighborhood tree colored in gray matches the
neighborhood tree of u1. In this way, we reduce the candidate set
of u1 to fv9g and further avoid false positive results.

Therefore, compared with the SPath method, our novel neigh-
borhood tree-based approach works much better, particularly in
avoiding more false positive results than that with the SPath
method. This result occurred because unlike the path-based graph
indexing mechanism, fewer pieces of structural information will be
missing when transforming a graph into a neighborhood tree. In
the following paragraphs, we describe several details in imple-
menting the proposed neighborhood tree-based approach.

To solve the unordered tree containment problem, we first nor-
malize the neighborhood tree into a unique depth-first canonical
form as defined in previous research [41], and we then represent
the canonical tree as a string for testing containment. Many ordered
trees can be driven according to the ordering scheme of the vertices.
From these ordered trees, we can uniquely select one as the canon-
ical form to represent the corresponding unordered tree.

We adopt a string encoding scheme to represent the trees,
which is more space-efficient and more easily manipulated.
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Fig. 7. Query matching time for real dataset.
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Assume that the string representation of tree T is denoted as ST . To
generate the string encoding, a depth-first traversal starting from
the root is performed. When a vertex is visited during the traversal,
the vertex label is appended to the end of the string. When a back-
tracking occurs from a child to its parent, a distinguished label (‘‘#’’
here) not existing in the tree vertex label set needs to be appended
to the string. The string encoding of tree T can differ. From all the
tree strings encoded for tree T, the form of tree T with the minimal
string value is considered as the canonical form of T, where the
distinguished label ‘‘#’’ is defined as the largest label. We can
construct the depth-first canonical form for an unordered tree in
OðcklogkÞ time by using a tree isomorphism algorithm given in
previous research [42], where k is the number of vertices and c is
the maximal degree of vertices in the tree.

Example 4.4. For the neighborhood trees in Fig. 4(b) and (c), the
corresponding canonical trees are ‘‘A B B # C # D # # B B # D # # C
B # B # #’’ and ‘‘A B B # C # # B B # D # #’’, respectively.

By taking advantage of the tree encoding scheme and canonical
form, we apply the algorithm presented in previous research [40]
to obtain all occurrences of neighborhood trees in the large graph
G. The cost of tree containment testing will be minimal because we
have pruned most of the negative vertices by using level-wise sig-
natures, and the computing time of the tree containment testing is
a polynomial. All occurrences of trees will be further used in the
joining process.
4.2. Index construction

For actual implementation of the neighborhood tree index, we
decomposed it into three components:

(1) Label Table: An inverted label index, in which the key is a
label and value is the identifier list of vertices with that
label.

(2) Level-wise Signature Table: A table recording the neighbor-
hood edges of each vertex according to different levels. For
each edge, only the number of occurrences is maintained.

(3) Edge-List: An edge list that keeps track of vertex identifiers
for each edge.

For the neighborhood tree signature, we can rebuild from the
level-wise signature table and edge-list such that we can save a
substantial amount of indexing space. Furthermore, on the basis
of the neighborhood tree index, we can even rebuild the original
graph because all edges in the graph are recorded.

Example 4.5. In Fig. 5(a), we present the label table for graph G;
Fig. 5(b) shows the level-wise signature table of v9 and the edge
list.

When constructing the neighborhood tree index, each vertex
should be visited, and its level-wise signature needs to be built.
To accomplish this, a breadth-first search is required to visit edges
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Fig. 8. Index construction for synthetic dataset.
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within the distance of r. Moreover, the label table and edge-list can
also be built. Assume the maximal degree of vertices is deg, then
the time complexity to build a level-wise signature for a vertex

is
Pr

i¼0ðdegiÞ. Therefore, the time cost for index construction is

OðjVðGÞj �
Pr

i¼0ðdegiÞÞ, with OðjVðGÞj � jEðGÞjÞ as the worst case.
Regarding space complexity, the edge-list takes up most of the

space. For each vertex,
Pr

i¼0ðdegiÞ number of edges is required to
record the edge-list. Therefore, the total space cost is

OðjV j �
Pr

i¼0ðdegiÞÞ.
5. Query reconstruction

As stated in the pattern-based matching algorithm, when per-
forming in each iteration of Recursive_Match, a pattern-based
recovery is employed to reconstruct the query. In this way, we
transform the matching process from vertex-at-a-time to
pattern-at-a-time. In addition to pruning negative vertices, the
neighborhood tree is also leveraged to reconstruct the query. In
this section, we present the method for choosing the smallest of
the neighborhood trees to cover the query in addition to the
method for joining them.

5.1. Neighborhood tree join

Definition 11 (Joining of Neighborhood Trees). Given a neighbor-
hood tree tr

GðuÞ of u and a neighborhood tree tr
GðvÞ of v, the joining

of the two trees is defined as Eðtr
GðuÞÞ [ Eðtr

GðvÞÞ if they have at least
one common edge, such as Eðtr

GðuÞÞ \ Eðtr
GðvÞÞ – £. The joining is

denoted as tr
GðuÞ ffl tr

GðvÞ. The join-predicates are defined as the
common edge set of Eðtr

GðuÞÞ \ Eðtr
GðvÞÞ.

If two neighborhood trees in graph G are joinable, they must
satisfy the join-predicates as the corresponding neighborhood
trees in Q, such as 8e 2 Eðtr

Q ðuÞÞ \ Eðtr
Q ðvÞÞ. Then, we have

f ðeÞ 2 Eðtr
Gðf ðuÞÞÞ \ Eðtr

Gðf ðvÞÞÞ. To accelerate the join process, edge
identifiers are recorded to distinguish different edges and are also
used for set operations.

Example 5.1. Taking u1 and u4 in query Q for example, the join-
predicates of their neighborhood trees are the edge set {1, 3, 4}. For
their matched candidates v9 and v6 in G, the join-predicates are {8,
9, 10, 11, 12, 13}. For edges, we have f ð1Þ ¼ 13; f ð3Þ ¼ 10, and
f ð4Þ ¼ 9, which all can be found in the set {8, 9, 10, 11, 12, 13}.
Thus, neighborhood trees of v9 and v6 are joinable. In this way, we
can quickly recover the query to make use of trees.
5.2. Optimization of search order

In this section, we consider the selection strategy of neighbor-
hood trees from query Q as well as their selecting order. To match
a query in the large graph, only a small set of neighborhood trees
that covers all of the edges in the query are required. However, it
is a set-cover problem to reconstruct the query by using the small-
est set of neighborhood trees, which is proved to be NP-complete.
Therefore, as the methods proposed in previous research [16,17], a
simple greedy approach is adopted for selecting neighborhood
trees in each recursive joining process. To decide which neighbor-
hood tree is selected in each iteration, we estimate the cost of each
join and choose the neighborhood tree with the minimal cost.

Suppose when performing query matching, L neighborhood
trees are selected for nodes u1; . . . ;uL in order, denoted as
tr

Q ðu1Þ; . . . ; tr
Q ðuLÞ, respectively. For simplicity, we use ti to represent

tr
Q ðuiÞ;1 6 i 6 L. The product of cardinalities of matched neighbor-

hood trees in G is considered as the cost evaluation of a joining pro-
cess. Then, the cost of a join ti with all visited neighborhood trees is
formulated as

CostðtiÞ ¼ Cardði� 1Þ � jCðtiÞj; ð10Þ

where Cardði� 1Þ is the number of all matched neighborhood trees
in G for nodes from u1 to ui�1. Cardði� 1Þ can be defined as

Cardði� 1Þ ¼ CostðtiÞ � ai�1; ð11Þ

where ai�1 2 ½0;1� is a reduction factor. The total join cost of query Q
can be formulated as

CostðQÞ ¼
XL

i¼1

CostðtiÞ: ð12Þ

However, it is not easy to compute the total joining cost and
obtain the joining order with the smallest cost. It should be noted
that if we can reduce the joining count L and the result count of
each join CardðiÞ, we can also minimize CostðQÞ. To achieve this
goal, we find a neighborhood tree in Q that has fewer common
edges with visited neighborhood trees in Q; fewer matched neigh-
borhood trees in G may be a good pattern to be chosen in each
recursion. In this way, we can not only cover the query quickly
but also reduce the number of joining results. The selectivity of a
neighborhood tree can be defined as

selectiv ityðtiÞ ¼
jEðtr

Q ðuiÞÞ � [k¼i�1
k¼1 ðEðtr

Q ðukÞÞÞj
jEðQÞj � Cðtr

Q ðuiÞÞ
; ð13Þ

where we divide the probability of non-occurred edges of ti in Q by
the number of matched neighborhood trees for ti in G. Our query
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Fig. 9. Query matching time for synthetic dataset.
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optimizer always chooses a neighborhood tree with the largest
selectivity value in a greedy approach. This also indicates that a
new vertex with the longest distance from all visited vertices may
have higher selectivity.
6. Experiments

In this section, we compare the performance of our proposed
approach, NTree, with other state-of-the-art methods on both real
and synthetic datasets. All algorithms were implemented in Java 7
and run on a 2.0 GHz Pentium dual machine with 8 GB memory
running a Ubuntu operating system. When running the experi-
ments, we set the following parameters for the Java virtual
machine: Xms = 512 MB and Xmx = 2048 MB. The neighborhood
radius r was set to 4 for both SPath and NTree if not specified
explicitly.
6.1. Biological network

We adopted the same real dataset as that used in SPath, which
is a yeast protein interaction network given by the Munich
Information Center for Protein Sequences (MIPS) [43]. Six available
datasets were downloaded and combined to construct a large
graph with 5,657 vertices and 37,221 edges. To obtain a meaning-
fully large graph and corresponding queries, we added Gene
Ontology (GO)1 information as vertex labels to the proteins. The
GO is a hierarchy of categories describing cellular components,
biological processes, and molecular functions of genes and their
products (proteins). Each GO term is a vertex in the hierarchy and
has one or more parent GO terms; each protein has one or more
GO terms. The original GO terms in the yeast protein interaction net-
work contain 6,289 distinct labels. If we use the original GO terms as
vertex labels, more than 2,700 distinct labels exist in the network. To
further reduce the number of labels, high-level ancestors were used
to relax the GO terms, which consist of only 136 distinct labels.

For the queries, we generated three different types of graphs:
cliques, paths, and normal graphs. As stated in previous research
[16], the cliques may correspond to protein complexes, whereas
the paths may correspond to transcriptional or signaling pathways.
The normal graphs are considered as general queries in the middle
of two extremes of cliques and paths. For each normal graph and
path, we generated 1000 queries varying in size from 2 to 10. For
cliques, 1000 queries were generated from only size 2 to 7 because
cliques with sizes greater than 7 have no answers. In Table 2, we
1 http://www.yeastgenome.org/.
present the characteristics of datasets and query sets. If a query
had an excessive number of matchings in the network (more than
1000 answers), the matching process was terminated after 1000
answers were obtained. It should be noted that the queries return-
ing no answers were not counted in the statistics. (SPath and
GraphQL use the same statistical strategy.)

In Fig. 6, we evaluate the index construction cost for SPath,
GraphQL, and NTree by using the yeast protein interaction net-
work. Fig. 6(a) illustrates the space requirement by varying the
neighborhood radius r from 1 to 5. Compared with SPath and
GraphQL methods, NTree required more memory space to record
neighborhood information for each vertex because it keeps track
of the neighborhood edges; SPath and GraphQL record only neigh-
borhood vertices. NTree can use these neighborhood edges to
reconstruct the neighborhood trees and even the original graph.
With an increase in r from 1 to 5, NTree grew linearly, which is
similar to SPath and GraphQL. The memory used for NTree was less
than 40 MB even when r ¼ 5, which indicates that all neighbor-
hood information is maintained when performing query matching.
Fig. 6(b) illustrates the index construction time for these three
approaches. NTree required 30% more time than that by SPath
and three times that by GraphQL. However, even when r ¼ 5, the
running time of index construction for NTree was within 250 s.

In Fig. 7(a), we present the average response time of the three
different types of queries for NTree, SPath, and GraphQL. For path
queries, the matching performances of NTree and SPath were close,
whereas the elapsed time of GraphQL was three times that of the
NTree. Because path queries do not contain complex relationships,
the pruning efficiency of both NTree and SPath approaches was
similar. However, the GraphQL approach was less effective than
the other two approaches. The joining processing procedures of
these three approaches were also similar to each other. For clique
queries, NTree outperformed SPath and GraphQL up to 30% and
50%, respectively. Compared with the pruning methods used in
SPath and GraphQL approaches, which only filter vertices accord-
ing to the profile of neighborhood vertices, NTree leveraged neigh-
borhood trees, which contain more structural information. This
result indicates that NTree has a more powerful pruning ability.
Moreover, NTree decomposed the query into trees, which can
reconstruct the query efficiently to result in the requirement of
fewer joining processes when performing recursive matching. For
normal queries, NTree also presented significant improvements
in performance.

In Fig. 7(b)–(d), the separate steps of average processing time of
NTree are shown respectively by varying the query sizes. The sep-
arate steps mainly included a vertices pruning process to obtain all
candidates as well as matched neighborhood trees and a query

http://www.yeastgenome.org/
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reconstruction process for recursive matching. As shown in the
figures, the pruning process required the majority of time for query
matching because the generation of all candidates and matched
neighborhood trees in the network requires a substantial amount
of time.
6.2. Synthetic graphs

We also evaluated the query matching performance on syn-
thetic graphs. Synthetic datasets were generated by using the same
method as that proposed in SPath. Graphs were generated on the
basis of the Recursive Matrix model [44] following the power
law in- and out-degree distributions. The parameters were set by
the default values specified in this paper. When performing this
process, the label table and level-wise signature table were main-
tained in the main memory to speed up the matching process. Five
large networks with vertex numbers from 500,000 to 2,500,000
were generated, in which the number of edges was five times of
that of vertices. The vertex labels were generated randomly from
the label set with size 1%� jVðGÞj.

In Fig. 8, we present the evaluation of index construction for
NTree, SPath, and GADDI [18] approaches. The GraphQL approach
failed in all of these scenarios because of the huge quantity of ver-
tices and edges. Therefore, we compared our proposed method
NTree with the GADDI approach instead, which is a state-of-the-
art approach for mining large-scale networks exclusively. As
shown in Fig. 8(a), NTree scaled linearly with an increase in graph
size. Therefore, NTree, SPath, and GADDI have good scalability in
terms of index size. Although the running time increased rapidly
when the graph size increased, the index construction time is still
acceptable considering that only one index construction was
required.

In Fig. 9, we further compare the matching performance of
these three approaches on the synthetic graph G with
jVðGÞj ¼ 1;000;000 and jEðGÞj ¼ 5;000;000. Queries were gener-
ated with various sizes of 5, 10, 15, and 20 by randomly extracting
induced subgraphs from G. Similar to the previous generating
method, for each size, 1,000 queries were generated, and the aver-
age response time was evaluated. As shown in Fig. 9(a), NTree out-
performed SPath and GADDI in terms of efficiency up to 20% and
50%, respectively. As stated previously, this result is attributed to
the improvement of pruning and reconstruction abilities. For the
GADDI approach, we did not give the result when the query size
was 20, because such a size failed to complete its query processing
in a reasonable amount of time. In Fig. 9(b), we also illustrate the
running time of separate steps for query matching. The time
required for the reconstruction process was increased dramatically
because the retrieval of edge-lists from the disk is needed for each
joining process.
7. Conclusions

In this paper, we propose a pattern-based graph-matching algo-
rithmic framework. We evaluate the vertex pruning and query
reconstruction abilities of three structural patterns: paths, trees,
and subgraphs. Trees are considered as the best patterns for index-
ing graphs. A new graph-indexing mechanism neighborhood tree is
proposed by preserving the local structural information of vertices
for candidate selection and query reconstruction. To recover the
query, a tree joining strategy is presented. Furthermore, a cost
evaluation model considering both the pruning and reconstruction
abilities is also described. Through extensive experiments on real
and synthetic graph datasets, we demonstrate that our NTree is a
scalable and efficient graph-indexing technique and can
outperform state-of-the-art methods such as SPath.
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