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Abstract

Attribute grammars are a formal notation for expressing the static semantics of programming
languages — those properties that can be derived from inspection of the program text. Attribute
grammars have become popular as a mechanism for generating language-based programming
environments that incrementally perform symbol resolution, type checking, code generation and
derivation of other static semantic properties as the program is modified.  However, attribute
grammars are not suitable for expressing dynamic semantics — those properties that reflect the
history of program execution and/or user interactions with the programming environment.  This
article presents action equations, an extension of attribute grammars suitable for specifying the
static and the dynamic semantics of programming languages.  It describes how action equations
can be used to generate language-based programming environments that incrementally derive
static and dynamic properties as the user modifies and debugs the program.
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1. Introduction
This article addresses the processing performed by language-based environments (LBEs).

This processing is performed automatically and incrementally (in the background) as the user

writes and tests his programs.  It requires an internal representation that consists of the program

itself plus additional information maintained by the environment during program construction

and execution.  This information represents two kinds of semantic properties, static and dynamic.

Static properties are those that can be determined by inspection of the program, while dynamic

properties reflect the interaction between the user and the environment.  The implementor of an

LBE describes its processing as derivation and manipulation of these properties.  For example,

symbol resolution, type checking and code generation involve static properties, while

interpretation, run-time support and symbolic debugging involve dynamic properties.

Recent research has focused on the generation of LBEs from descriptions.  Several

mechanisms have been proposed for specifying the processing performed by the environments,

and the most successful of these have been action routines, attribute grammars and denotational

semantics. Action routines are written as a collection of imperative subroutines.  Consequently,

it has proved difficult for an implementor of an environment to anticipate all possible

interactions among these subroutines that may result in adverse behavior.  Attribute grammars

are written in a declarative style and the implementor need not be concerned with subtle

interactions because all interactions among semantic equations can be determined automatically.

Attribute grammars have been successfully applied only to the description of static semantics,

and have hitherto seemed unsuited to the description of dynamic semantics.  Denotational

semantics is a formal mechanism that provides direct means for defining certain dynamic

properties, notably interpretation.  Denotational semantic specifications have not been extended

to other dynamic processing such as interactive debugging nor to incremental detection and

reporting of static semantic errors.

This article proposes an extension to attribute grammars that supports incremental processing

of both static and dynamic semantics.  The extended paradigm is called action equations. Action

equations are written in a notation that retains the flavor of attribute grammars but adds an easy

means to express dynamic properties as well as static properties.  The extensions to attribute

grammars include attaching particular semantic equations to events that represent user

commands and supporting dependencies among events as well as among attribute values.  The
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applicative nature of attribute grammars is relaxed, allowing attributes to be treated as variables

and permitting modification in addition to replacement for changing the values of attributes.

Together, these extensions are sufficient to support incremental processing of dynamic

semantics.

2. Generation of Language-Based Environments
LBEs are an alternative to the traditional tools used by programmers to edit, compile and

debug their programs.  The key components of an LBE are a standard user interface and a

common program representation.  Many programming environments have been built using

structure editing technology, which supports both of these features.  The user interface consists

of some mixture of template editing and text editing (supported by incremental

parsing [23, 35, 63]); the program is represented as a parse tree or abstract syntax tree, where

each node may be decorated with attributes.  Some of the best known LBEs are Mentor [11],

Interlisp [60], the Program Synthesizer [59], Gandalf [24], Pecan [50], and Rational [2]. Each of

these environments consists of an integrated collection of tools that (1) can be viewed as a single

tool [7] and (2) may be applied incrementally as the programmer writes and tests his programs.

In some cases, the tools are automatically applied without explicit intervention by the

programmer. For example, type checking and symbol resolution may be performed

automatically as the program is created and modified; code generation and some code

optimization may also be done incrementally.

The early LBEs were hand-coded.  Then several environment generators were developed,

including ALOE [45], Metal [12] and the Synthesizer Generator [53]. An environment

generator is a program that combines an environment description with the editor kernel to

produce the desired LBE. The editor kernel provides the facilities common to all environments,

such as window management and language-independent tree manipulation commands, while the

environment description includes all the information specific to the desired programming

environment. The person who writes the environment description is called the implementor of

the environment while a person who uses the environment to write his programs is called a user.

An environment description has two components, the syntax description and the semantics

description. The syntax description includes the abstract syntax of the programming language

and the user interface (or concrete syntax) for the language. This information is normally
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provided as some form of context-free grammar.  A syntax description alone is sufficient as an

environment description if no semantics processing is required. An environment generator can

combine the syntax description with the editor kernel to produce a pure syntax-directed editor

that supports program editing and enforces correct syntax.

2.1. Semantics Description

The semantics description specifies all the processing performed by the environment, i.e.,

everything the environment does that is not among the standard facilities provided by the editor

kernel. Although an LBE is a single tool, the semantics processing of an LBE is performed by

what is conceptually a collection of tools and tool fragments that are knowledgeable about the

particular programming language.  The collection can be subdivided into tools that handle static

semantics and tools that handle dynamic semantics.

The static semantics of a program involve those properties that, by definition, cannot change

during its execution.  The static properties of a conventional, lexically scoped programming

language include symbol resolution, type identification and the object code generated for the

program. For example, the set of identifiers defined in a particular program, the mapping

between identifier uses and identifier definitions, and the types assigned to particular identifiers

and expressions are all in the realm of static semantics.

Consider the program fragment in figure 2-1.  The program states that the variable a is

declared to be of type integer, but the program also states that the variable a constitutes the

conditional expression of the if statement. The static semantics of this programming language

require that a variable has the same type over its lifetime and that the condition expression of

every if statement is of type boolean. Thus there is a static semantic error in the program.  A

programming environment that included a type checking tool would warn the user of this error.

VAR a: integer;
...
IF a THEN

...
ELSE

...

Figure 2-1: Type Checking Example

If the tool were incremental, it would warn the user as soon as the error could be detected.  If
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the user had first entered that the type of a is integer, and later used a as the conditional

expression for the if statement, then the error would be detected and reported immediately after

the user entered the conditional expression.  If the user had instead added a to the list of

variables, without indicating its type, then used a as the conditional expression, and finally

returned to the variables list to state that a is an integer, then the error would be caught

immediately after the user entered this type information.

The dynamic semantics of a program involves the derivation and manipulation of those

properties that may change during the execution of the program.  The dynamic properties of a

conventional language include the assignment of values to particular storage locations and the

maintenance of the current focus of execution behavior (i.e., the program counter). The area of

dynamic semantics includes run-time support and symbolic debuggers as well as interpreters.

The same programming environment sketched above might include an interpreter as well as

the type checking tool.  The job of the interpreter is to directly execute programming language

statements. The interpreter does not need to perform type checking or other static semantics

processing, since these functions are handled by other tools.  The interpreter performs the

activities that the program fragment is defined to do according to the dynamic semantics of the

programming language.

Consider the corrected program fragment in figure 2-2.  The interpreter would begin execution

of the if statement by getting the current value of the a variable from the store (which binds

variable locations to values).  If a does not have a value, this would be reported to the user as an

error (or the environment could ask the user to enter a value).  If a does have a value, the

interpreter would then check whether it is ‘true’ or ‘false’.  If true, the interpreter would execute

the then statement; if false, it would execute the else statement.

VAR a: boolean;
...
IF a THEN

...
ELSE

...

Figure 2-2: Interpretation Example

This behavior does not depend on whether the interpreter tool is incremental or non-



5

incremental. By analogy to the type checking tool, an ‘incremental’ interpreter might follow

along behind the user, executing the program as it is typed, as in VisiProg [25]. Instead, we

think of an ‘incremental’ interpreter as one that permits the user to select, for example, the then

part of the if, the entire if statement, or an arbitrary program unit, and give a command to

interpret that unit.  In a non-incremental environment, the user would have no choice but to

commence execution of the program at the beginning.

Specifying static and dynamic semantics is very complex.  In contrast to the syntax

description, there is no commonly accepted paradigm for the semantics description of a

programming environment. There are two major schools that support different methods of

specifying the semantics processing of an LBE: action routines and attribute grammars. Both

methods support interactive semantics processing, i.e., the integrated, incremental, non-

sequential, structure-oriented computing style described by Notkin in his thesis [46]. Such

interaction with the user is an essential requirement for modern programming environments.  A

third major school — denotational semantics — disagrees with this claim, and supports another

method of specifying semantics processing for non-incremental, sequential programming

environments. These three methods are briefly described here and are explained in detail in the

references.

The first school uses action routines, which were proposed by Medina-Mora in his thesis [45]

for use in LBEs [18, 24]. Action routines are based on the semantic routines used in compiler

generation systems such as Yacc [31]. The semantics processing is written as a set of routines in

either a conventional programming language or in a special purpose programming language

designed for writing action routines [1]. A set of routines is associated with each production in

the abstract syntax, one for each user command (such as Create, Delete, Enter, Exit, Execute,

etc.) that can be applied to an instance of that production.  The corresponding routine is

automatically invoked by the editor kernel when an editing command is applied to a node in the

syntax tree representing the program.

The second major group uses attribute grammars, which were introduced by Knuth [43] for

specifying the context-sensitive properties of programming languages.  Attribute grammars are

an alternative to semantic routines in compiler-compilers [14, 20]. The generation of LBEs from

attribute grammars [32, 53] was proposed by Demers, Reps and Teitelbaum [8]. The semantics

of the programming language are written as (1) a set of attribute declarations associated with
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each symbol; and (2) a collection of semantic equations — each associated with a particular

production — that define the values of the attributes of the symbols on the production’s left and

right hand sides.  The values of the attributes are determined by evaluating all the semantic

equations as a set of simultaneous equations.  During program editing, an incremental

algorithm [33, 52] automatically reevaluates those attributes whose values may have changed as

the result of a subtree replacement (editing operation).

The third school uses denotational semantics, originally promoted by Scott and Strachey

[55] for formal reasoning about programs.  The semantics of the programming language are

written as a set of formal definitions — associated with each production in the abstract syntax —

that specify the denotation of each language construct in terms of the environment (which binds

variable identifiers to locations), the store, and the denotations of other productions.  Several

research groups have applied denotational specifications to generation of compilers [6, 48, 49]

and interpreters [5], but none of these systems are effective in an incremental programming

environment. However, Johnson has recently developed an incremental interpreter/debugger for

GL [34], an expressional language based on denotational semantics.

Other methods have been proposed (e.g., [3, 10, 13, 51]), but none fulfill all the requirements

of an LBE.  The basic problems are:

• The design, implementation and debugging of action routines, or any other
procedural mechanism, is tedious and error-prone compared to the ease with which a
syntax description can be developed.

• The capabilities of attribute grammars, denotational specifications and the various
other declarative methods are generally limited to a relatively small subset of the
processing performed by modern programming environments.

This article describes a new method, action equations, that augments attribute grammars with

mechanisms taken from action routines.  The ‘action’ of action equations comes from association

of user commands (or actions) with action routines, while the ‘equations’ comes from the

semantic equations of attribute grammars.  Action equations achieve a synthesis with most of the

advantages of both paradigms but few of their disadvantages.  Action equations were originally

presented in the author’s thesis [36], and additional details can be found there.
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2.2. Overview of Action Equations

Attribute grammars are not suitable for the description of dynamic semantics because of the

inherently static nature of their attributes.  The value of each attribute is equated to a specified

function of the program text and other attributes.  It cannot depend in any way on the history of

modifications to the program text or of the execution of the program.  By definition, attribute

grammars are inappropriate for expressing dynamic semantics.

The primary contribution of the action equations paradigm is that it supports the expression of

history or dynamic properties in a style based on attribute grammars.  This is done by embedding

rules similar in form to semantic equations in an event-driven architecture. Events correspond to

user commands and activate their attached equations in the same sense that, in the action routines

paradigm, commands trigger the associated action routines.  The editor kernel orders the

evaluation of active equations according to the commands invoked by the user and the

dependencies among attributes and events as defined by the equations.  Equations that apply at

all times are not attached to particular events and these correspond exactly to the semantic

equations of attribute grammars.

Those action equations attached to events, however, should not be confused with semantic

equations. Attribute grammars are applicative:  an attribute is a variable in the sense of algebra’s

simultaneous equations but not in the sense of conventional programming languages.  An

attribute is reevaluated only when the program is modified, and then the semantic equation

replaces the old value with an entirely new value.

These restrictions are relaxed for action equations, as follows.  First, an equation may be

reevaluated due to the selection of an event, so an attribute may be reassigned many times even

though the program has not changed.  Second, an equation is permitted to define the new value

of the attribute as a modification of its previous value in the case of aggregate (or composite)

values, such as the symbol table and the run-time stack.  This second extension to pure attribute

grammars has recently appeared in several ‘attribute grammar’ systems [26, 54]. Together, these

side-effects and the added dimension of events make it possible for action equations to support

the expression of dynamic semantics in a style similar to how attribute grammars support the

expression of static semantics.
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3. Description of Dynamic Semantics

3.1. Action Equations

goal symbol ::= component : type1 1
...
component : typen n

/* A production consists of a non-terminal goal symbol, followed by "::=",
followed by a list of components.  A component is defined by a name, followed
by ":", followed by its type. */

Figure 3-1: Production

Action equations are associated with particular productions in the syntax description in the

same manner as the semantic equations of attribute grammars.  The productions define the

composition of the non-terminal nodes in the syntax tree representing the program.  Figure 3-1

illustrates the context-free grammar notation adopted for action equations.  This notation is based

on the Interface Description Language [44, 58] (IDL) developed as part of the Ada

implementation effort, and has been used previously in DOSE [39], an interpretive LBE

generation system.  Only the abstract syntax is shown; the concrete syntax, or ‘syntactic sugar’,

is omitted throughout this article.  This syntax description notation is not in any way integral to

action equations, and any other context-free grammar notation could be substituted — the only

difficulty might be a less readable semantics description.

A non-terminal goal symbol is associated with a list of components, where each component

has a name and a type.  The same symbol may appear as the goal of multiple productions,

indicating several alternative derivations; for example, a STATEMENT may be an if statment, a

while statement, a compound statement, etc. The type of a component may be a non-terminal

symbol, a terminal symbol or a sequence.  Terminal symbols correspond to the primitive types of

conventional programming languages.  The set of terminal symbols available is specific to the

implementation of the environment generation system, but would typically include identifier,

integer, real, boolean, string and text. The sequence constructor is in contrast to the tail recursive

method of defining lists using non-terminal, terminal and empty symbols.  In each case, the

sequence definition includes the element type.

In addition to alternative sets of components, a group of attributes and events may be
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goal symbol { attribute : type1 1
...
attribute : typem m
event , ..., event }1 p

/* The attributes and events associated with the goal symbol are declared
between braces "{}". */

Figure 3-2: Attribute and Event Declarations

associated with each goal symbol as depicted in figure 3-2.  Each node defined by this symbol is

decorated with this set of attributes, which represent the current values of its properties; the

events are attached to action equations that manipulate these properties.  Attributes are typed in

the same manner as components, where the type is given as a non-terminal symbol, a terminal

symbol or a sequence.

production

equation1
...
equationn

Figure 3-3: Action Equations

The action equations associated with a particular production describe the semantics processing

for each node that is an instance of the production.  A production and its action equations are

depicted in figure 3-3. As in attribute grammars, the order equation , ..., equation shown does1 n

not imply any sequencing among these equations, or that they should be evaluated in this or any

other particular order.

location := function(attributes and terminals)

Figure 3-4: Assignment/Constraint Equation

There are five kinds of action equations: assignments, conditionals, constraints, delays and

propagates. The assignment and constraint equations both have the form shown in figure 3-4,

and the distinction is due to whether or not the equation is attached to an event. Assignments are,

by definition, attached to events while constraints, by definition, are not; this is explained in the

next section.  For both, the right hand side denotes some function of attribute values and terminal
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node values; these values are called the arguments or inputs of the equation.  The value

computed by this function, called the result or output, is placed in the location given on the left

hand side of the equation.  The location is typically the name of an attribute, in which case the

equation is identical in form to the semantic equation of attribute grammars.

The location may also be given as an address expression applied to an attribute name.  This

permits the modification of a previously calculated attribute value.  This divergence from the

attribute grammar paradigm has a significant implication: Attribute modification, together with

events, make it possible for an attribute to reflect the history of program modification and/or

execution. Otherwise, each attribute would of necessity be derived solely from the program text

as explained previously.

The third alternative is for the location to be an address expression applied to a node in the

syntax tree. Thus, the equation directly modifies the program as seen by the user, which is not

possible in the pure attribute grammar paradigm.  It might be argued that modification of the

program by the environment should never be possible, on the grounds of the ‘principle of least

astonishment’. This argument assumes the programmer does not expect the programming

environment to change his program, but exactly the opposite is true in transformational

programming environments, formal [4, 19, 47, 57]  or  informal [62]. There is no reason the

programmer should expect less from an LBE; in particular, manipulation of the program text by

action equations is one mechanism for implementing transformations.

If expression
Then equation(s)
Else equation(s)

Figure 3-5: Conditional Equation

The conditional equation consists of an expression and two sets of equations, as depicted in

figure 3-5.  The conditional equation specifies that when the expression is true, the first set of

equations must hold; when the expression is false, the (optional) second set is applicable.  All

conditional equations can be expressed instead by permitting conditional expressions within

other kinds of equations, and are thus only convenient syntactic sugar that provide no new

meaning.
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3.2. Events

The propagate and delay equations, as well as the distinction between assignments and

constraints, requires a discussion of events.  Events correspond roughly to user commands.

There are two kinds of events, standard events and implementor-defined events.  Each standard

event coincides with a primitive operation accessible to the user, including at least:

Create Replace the current placeholder with a newly created instance of a specified
language construct.

Delete Remove the subtree rooted at the current node from the syntax tree and
replace it with a placeholder.

Clip Save a copy of the current subtree in a register.

Insert Replace the current placeholder with a copy of a previously clipped subtree.

Enter Move the editing cursor to a specified child of the current node.

Exit Move the editing cursor to the parent of the current node.

The same set of standard events may appear in the semantic description of every environment

just as the same set of standard commands are available in every environment.  In contrast, an

implementor-defined event is an identifier introduced by the implementor for a particular

environment. An implementor-defined event corresponds to a user command available only in

the specific environment, such as Execute or CrossReference a Pascal program.

production

equation1
...
equationn

event -->1

equation1,1
...
equation1,m

...

event -->p
equationp,1
...
equationp,q

/* When equations are attached to an event, the event name is given first,
followed by "-->", followed by the equations written in arbitrary order. */

Figure 3-6: Attaching Equations to Events
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Each action equation associated with a particular production may or may not be attached to a

particular event.  Some action equations associated with a particular production may be attached

to one particular event, other action equations associated with the same production may be

attached to a different event, and still other equations may not be attached to any event at all.

Figure 3-6 illustrates a number of equations associated with the same production: equation1

through equation are not attached to any event, equation through equation are attached ton 1,1 1,m

event , and so on, through equation through equation attached to event .1 p,1 p,q p

goal symbol ::= component : type1
...
component : typen

event On component -->a 1
equations

event On component -->b 1
equations

...

event On component -->z n
equations

/* When the "On" keyword appears, the inherited event is associated with the
named component; otherwise, the synthesized event is associated with the goal
symbol of the production. */

Figure 3-7: Inherited Events and Equations

The semantic equations of attribute grammars may define the value of an attribute associated

either with a component of the production (the corresponding attribute is inherited) or with its

goal symbol (the attribute is synthesized). Events are similarly inherited or synthesized.  The

events shown in figure 3-6 are associated with the goal of the production, and thus synthesized.

An inherited event, with its attached equations, is associated with a component name as shown in

figure 3-7.  In this case, the event name must be declared for each goal symbol that is a legal

type for the component. Unlike the attributes of attribute grammars, the same event may appear

in both productions defining a node and thus may be both inherited and synthesized. Further, the

same event may be inherited multiply with respect to the same production, due to multiple

associations of the same event with incidentally the same element of a sequence (for example,

"event On component [i] -->" and "event On component [j] -->" where the ith element is alsoa n a n
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the jth).  The multiple sets of equations attached to the event are concatenated, as if they had not

been associated with different productions and/or different component descriptions.

Action equations that are not attached to a particular event fill the same role as the semantic

equations of attribute grammars in the sense that they may be reevaluated when the program

changes. It does not matter which particular user command caused the program modification,

since all are treated as subtree replacements. These equations are said to be permanently active.

In contrast, the collection of action equations attached to a particular event are active only when

the event is explicitly selected by a user command or explicitly propagated by a propagate

equation, explained shortly.  These equations are passive at all other times. Only active

equations may be evaluated, and an equation activiated by an event immediately becomes

passive again after its evaluation. The collection of action equations attached to an event

describe the semantics processing, or tool operation, for the user command that corresponds to

the event.

An assignment equation is attached to an event.  When activated by selection of the event, it

computes the value denoted by its right hand side and assigns this output to the location on its

left hand side.  A constraint equation cannot be attached to an event.  Whenever an input to its

right hand side changes in value, it updates the location on its left hand side to maintain the

equality. The distinction is necessary because constraints must always hold, as invariants, while

assignments are evaluated exactly once when activated.  Constraints are typically reevaluated in

response to subtree replacements, but may also be reevaluated when an assignment changes the

value of an input to a constraint.

Propagate event To destination

Figure 3-8: Propagate Equation

The user explicitly selects an event by moving the editing cursor to the node and entering the

command corresponding to the desired event.  Propagation of events from one node to another is

done with a propagate equation, as depicted in figure 3-8. When activated, the equation

propagates the given event to the indicated destination node.  This has the effect of activating

certain equations associated with the production that defines the destination node, in particular,

all those equations attached to the named event; if this set is empty, then no new equations are
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activated. As with the arguments of semantic equations in attribute grammars, the destination is

normally restricted to the children, siblings, parent and other ancestors (reached through uplevel

addressing [42]). However, it is also possible to propagate from an identifier definition to its

use(s) or from a use to its definition(s), as described in the next section.

Delay Until event At receiver

Figure 3-9: Delay Equation

The final kind of action equation is the delay equation, which has the form shown in figure

3-9. When activated, a delay equation suspends all currently active equations until the named

event is selected for the indicated receiver node.  Like the destination node of the propagate

equation, the receiver node is restricted to the parent, ancestors, siblings and children of the

current node.  When the event is selected with respect to the receiver node, the previously

suspended equations are reactivated.  The event may be selected either by a user command or by

a propagate equation resulting from a user command.  In the latter case, the previously

suspended and now activated equations are in addition to any equations that may be active at the

time of the event.  The receiver node of a delay equation is optional; if omitted, then the delay

equation refers to the selection of the named event when the editing cursor is at any node.

When a group of equations are attached to the same event, both as synthesized and inherited,

there is a specific ordering among the different kinds of equations.  In particular, any delay

equations are evaluated first and, in effect, simultaneously.  Thus all other equations attached to

the same event are suspended by the delay equation(s); if there are multiple delays, then all the

named events must be selected for their receivers to reactivate the suspended equations.  If there

are no delay equations, then any assignments and conditionals attached to the event are evaluated

in any order (except as noted below) consistent with the dependencies among inputs and outputs

of the assignments and the inputs of the expression parts of the conditionals.  Any constraints,

and conditionals not attached to the event, whose inputs are among the outputs of these

assignments are also evaluated if and only if the outputs are different than their previous values.

Any propagate equations are evaluated last; any equations activated by these equations are, in

effect, activated simultaneously.

This ordering among action equations is complicated by the conditional equation.  Neither the
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then part nor the else part equations are themselves activated until after the expression has been

evaluated, as soon as possible consistent with the partial ordering described above; an alternative

semantics would evaluate these expressions as late as possible, but some such restriction is

necessary to avoid non-deterministic behavior. After the value of the expression has been

determined, then the appropriate set of equations are simultaneously activated, and the above

rule applies regarding the previously active equations as well as the newly activated equations.

The main components of action equations paradigm have now been introduced.  Section 4

describes the application of action equations to the description of programming language control

constructs such as conditional statements, loops and procedure calls.  Section 5 considers

interactive execution of programs, including stream input/output and some typical features of

symbolic debuggers.  Section 6 discusses the translation and run-time support algorithms for

generation of LBEs from action equations.

4. Description of Control Structures

4.1. Flow of Control

if { Execute, Continue }

if ::= condition: EXPRESSION
thenpart: STATEMENT

Execute -->
Propagate Execute To condition

Continue On condition -->
If condition.value
Then Propagate Execute To thenpart
Else Propagate Continue To self

/* The if symbol declares two events, Execute and Continue.  The if production
defines two components, condition and thenpart.  EXPRESSION and STATEMENT are
each defined by several alternative productions, not shown.
"Component.attribute" accesses the named attribute of the named component.
Self always indicates the node representing the goal of the associated
production, in this case the if node, as opposed to one of its components or
attributes. */

Figure 4-1: If Statement Syntax and Semantics

Figure 4-1 demonstrates the use of implementor-defined events and propagation of events in a

simple description of interpretation.  The implementor defines the Execute event to specify the
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execution of an if statement.  When the Execute event is applied to an instance of the if

production, the propagate equation selects the Execute event for the condition child of the if

node. After any semantics processing involving the condition node are completed (including for

example the setting of its value attribute), then the condition child propagates the Continue event

to itself (the condition child). This Continue event activates the conditional equation.  If the

value of the value attribute is true, the Execute event is propagated to the thenpart child.  If not,

the if statement has completed execution, and the Continue event is propagated to itself (the if

statement). Thus, the implementor-defined Continue event fills the role of the continuation of

denotational semantics.

= { value: boolean
Execute, Continue }

= ::= operand1: EXPRESSION
operand2: EXPRESSION

Execute -->
Propagate Execute To operand1

Continue On operand1 -->
Propagate Execute To operand2

Continue On operand2 -->
Propagate Continue To self

Continue -->
value := (operand1.value == operand2.value)

/* Value is an attribute of the = symbol — as well as every other EXPRESSION
symbol. Terminal symbols such as boolean are given in italics. */

Figure 4-2: Action Equations for = Production

Events and equations for one conditional expression, the = production, are shown in figure 4-2.

When the Execute event is propagated to the = operator, the two operands are computed in order

and then the value attribute of the = node is set to the result of comparing the two operands.

Calculation of expression values does not, however, necessarily require this rather cumbersome

action equations apparatus.  Purely applicative expressions are handled in a natural way by pure

attribute grammars, as demonstrated by Reps’ and Teitelbaum’s desk calculator [53], so this is

not discussed further in this article.  Expressions involving (potentially recursive) function calls

and (multiple assignment) variables require a run-time stack, as discussed later in this section.
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compound ::= body: sequence of STATEMENT

Execute -->
Propagate Execute To body[1]

Continue On body[any] -->
Propagate Execute To body[next]

Continue On body[last] -->
Propagate Continue To self

/* The event declarations are omitted, as they are in further examples.  The
sequence type is indicated in italics. "Component[N]" refers to the Nth element
of the sequence component; "Component[any]" refers to any element of the
sequence. Next accesses the element following the current one, if any, while
last refers to the last element of the sequence.  */

Figure 4-3: Compound Statement Syntax and Semantics

Figure 4-3 illustrates how event propagation works for a compound statement (i.e., a

sequencer). The basic idea is that the Execute event propagates from the compound statement to

the first statement in the body of the compound statement, from the first statement to the next

statement in the body, etc. In the case of the last statement where multiple inherited events

"Continue On  body[any]" and "Continue On body[last]" both apply, both attached equations are

executed. But "Propagate Execute  To body[next]" has no effect since body[next] evaluates to

nil.

compound ::= body: sequence of STATEMENT

Execute -->
If body = nil
Then Propagate Continue To self
Else Propagate Execute To body[1]

Continue On body[any] -->
Propagate Execute To body[next]

Continue On body[last] -->
Propagate Continue To self

Figure 4-4: Compound Statement Syntax and Semantics, Revised

This discussion of the compound statement, and the previous example involving the

conditional statement and = operator, have been simplified in that they do not consider the

possibility that the body of the compound statement is empty, the condition and/or the thenpart
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of the conditional statement is missing, or one or both operands of the = operator are meerly

placeholders, respectively.  The analogous issue arises in the semantic equations of attribute

grammars, and is solved there by requiring the implementor to provide completing productions,

which define the value of the attributes for every potential placeholder.  Action equations also

take this approach, and the implementor must explicitly treat the possibility of empty sequences

and missing components.  The compound statement example is revised accordingly in figure 4-4,

where nil denotes an empty sequence; the rest of the examples in this article could be completed

similarly, but this is not done to keep the examples simple.

goto ::= label: identifier

Execute -->
Propagate Execute To @label.defsite

labeled ::= label: identifier
body: STATEMENT

Execute -->
Propagate Execute To body

/* The "@" operator dereferences the defsite attribute of the label component
to access the actual definition node elsewhere in the syntax tree. */

Figure 4-5: Goto Statement Syntax and Semantics

In order to describe the semantics of branch statements, some mechanism is needed to find the

destination of the branch.  This is done through identifier definition-use links. Several

extensions to attribute grammars have been proposed [9, 27, 28] that improve the efficiency of

incremental attribute evaluation by linking the definitions and uses for each identifier.  A change

in an attribute value at a definition site is propagated along the links to dependent attributes at its

use sites.  Any one of these schemes can be used as the basis for propagating an event from the

goto statement to the corresponding labeled statement as depicted in figure 4-5.

Figure 4-6 shows how the operation of a general loop statement is described using action

equations. In this example, the initialization is performed first.  Then the condition is tested. If

true, the body of the loop is executed.  Now reinitialization, condition testing and the body are

repeated until the condition becomes false.

Notice that the propagate equations in this example denote a circular dependency.  The
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loop ::= initialization: STATEMENT
condition: EXPRESSION
body: STATEMENT
reinitialization: STATEMENT

Execute -->
Propagate Execute To initialization

Continue On initialization, reinitialization -->
Propagate Execute To condition

Continue On condition -->
If condition.value
Then Propagate Execute To body
Else Propagate Continue To self

Execute On body -->
Propagate Execute To reinitialization

/* Multiple components (initialization and reinitialization) for inherited
events is introduced as shorthand, meaning the event is selected at either
node.*/

Figure 4-6: Loop Statement Syntax and Semantics

condition propagates to the body, the body propagates to the reinitialization and the

reinitialization propagates to the condition.  Although circular attribute grammars are

problematical for non-incremental evaluation [15] and rarely handled by incremental evaluators

(work by Walz and Johnson is a notable exception [61]), circularities among propagate equations

pose no difficulties.  If the user of a generated environment writes an infinite loop, then the

propagation never terminates, to preserve correct dynamic semantics processing; if the loop does

terminate, then the propagation terminates accordingly.

4.2. Procedure Call and Return

A likely syntax description for a procedure definition, with its formal parameters and local

variables, is shown in figure 4-7.  The Execute event and attached equations for the procedure

production are omitted, since they are essentially identical to those for the compound statement.

The procedure symbol has an AR attribute that acts as a template for the procedure’s activation

record during execution.  Frame is a non-terminal symbol, where the details of any particular

frame node are computed by constraints just as is done by attribute grammars.  For example, the

size (in bits, bytes or words) of each formal and local might be computed from its type and then

its offset within the activation record determined by the cumulative size (and required
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procedure { AR: frame }

procedure ::= name: identifier
formals: sequence of vardef
locals: sequence of vardef
body: sequence of STATEMENT

vardef { offset: integer
size: integer }

vardef ::= id: identifier
type: TYPE

/* STATEMENT and TYPE are each defined by several alternative productions, not
shown. */

Figure 4-7: Procedure Definition Syntax

alignments). This would require each implementor to define a suitable representation for each

datatype in his language [56]. One alternative would be to represent each data item as a node;

this is much less efficient at execution time but much more expedient at environment description

time.

program { stack: sequence of frame }

call ::= name: identifier
actuals: sequence of EXPRESSION

Execute -->
program.stack := Insert (@name.defsite).AR # program.stack
Propagate Execute To actuals[1]

Continue On actuals[any] -->
<storage for parameter in top stack frame> :=

actuals[any].value
Propagate Execute To actuals[next]

Continue On actuals[last] -->
<storage for program counter in top stack frame> := self
Propagate Execute To @name.defsite

/* Stack is an attribute of program.  The parentheses cause the higher
precedence ".AR" attribute access to apply to the result of the "@" operator.
"#" adds a new element to a sequence.  The determination of <storage for ...
in top stack frame> depends on the description of frames, not shown.  */

Figure 4-8: Call Statement Syntax and Semantics

The syntax and semantics of the procedure call statement are given in figure 4-8.  The run-time
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stack is represented as a sequence of frame nodes maintained as an attribute of the program node.

Execution begins by applying the internal version of the user-level Insert command to insert a

copy of the procedure’s activation record at the top of the stack.  The actual parameter

expressions are then executed, and their resulting values stored in the corresponding slots in the

activation record.  After the last parameter is available, a reference to the call statement is saved

as the program counter and then execution propagates to the procedure definition.

Remember that the apparent circularity of program.stack on both sides of the equation is not a

problem, since it occurs in an assignment rather than a constraint.  Such ‘circularities’ are

necessary for maintaining history information, where the new value of an attribute is computed

by directly modifying its old value.  Potential circular dependencies among constraints are

handled as in attribute grammars, by separating into in and out attributes where the synthesized

out attribute is the appropriate function of the inherited in attribute.

return ::=

Execute -->
program.stack := Delete program.stack[1]
Propagate Continue To <program counter in top stack frame>

/* The return production has no components.  For a function rather than a
procedure, the corresponding return would have an EXPRESSION component. Access
to <program counter in top stack frame> depends on the frame mechanism. */

Figure 4-9: Return Statement Syntax and Semantics

Figure 4-9 gives the equations for execution of a return statement.  The top stack frame is

removed from the stack using the Delete command, and the continuation propagates to the

original call statement.

5. Interactive Execution and Debugging

5.1. User Input/Output

Figure 5-1 illustrates one mechanism for representing sequential I/O, for either the terminal

display and keyboard or ASCII files.  For simplicity, each channel consists of both an input

stream and an output stream, where each stream is a sequence of buffered text lines.  Standard

input and standard output are combined in the first channel.
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program ::= ...
IO: sequence of channel

channel ::= name: identifier
input: sequence of text
output: sequence of text

/* The other components of a program are omitted. */

Figure 5-1: Input and Output Streams

write ::= expr: EXPRESSION

Execute -->
Propagate Execute To expr

Continue On expr -->
program->IO[1]->output := program->IO[1]->output # expr.value
Propagate Continue To self

/* "Node->component" accesses the named component of the named node, where the
node is either the goal symbol of the production or an ancestor. */

Figure 5-2: Write Statement Syntax and Semantics

Figure 5-2 gives the syntax and semantics of a simple write statement.  When the Execute

event is applied to an instance of the write production, the Execute event is propagated to

compute the value of the expression.  On the continuation, the text representation of this value

(as determined by the implementation of the underlying environment generation system) is

concatenated to the end of the output stream.  The output stream is automatically redisplayed on

the screen after every update.  Various kinds of unparse schemes have been proposed for

defining the concrete syntax necessary for displaying the program [24, 29, 53] or distinct views

of the program [21, 50]. The action equations paradigm assumes the availability of one of these

mechanisms for display purposes.

The read statement is slightly more difficult and requires a delay equation.  The first equation

attached to the Execute event for the read production, given in figure 5-3, requests the user to

select the Create event to add a new last element to the input stream. The delay equation has the

effect of suspending program execution until the user has entered a new line of input by

appending to the sequence of text lines that represents the standard input.  Only then is the last

(new) element of the input sequence stored as the value of the variable given in the read
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read ::= variable: identifier

Execute -->
Delay Until Create At program->IO[1]->input[last]
<storage for variable> := program->IO[1]->input[last]
Propagate Continue To self

/* <storage for variable> uses whatever mapping the implementor defines for
the environment and store, such as a stack of frames as described in the
previous section. */

Figure 5-3: Read Statement Syntax and Semantics

statement.

5.2. Program Suspension and Continuation

break ::=

Execute -->
Delay Until Continue At self

Figure 5-4: Break Statement Syntax and Semantics

The delay equation is also instrumental in specifying debugging facilities such as breakpoints

and singlestepping. Figure 5-4 shows hows a breakpoint might be described.  This example

follows the precedent set by Feiler in his thesis [17] (and elsewhere [16]) as to how the user

specifies a breakpoint before or after a particular statement.  It assumes that the programming

language has been extended by a special break statement.  The user designates a breakpoint by

inserting a break statement at the desired position in the program text.  The interpreter suspends

program execution when the Execute event is propagated to the break node, presumably by an

equation for some other node.

The user continues from a breakpoint by entering the Continue command when the editing

cursor is pointing to the break statement.  Selecting the Continue event at some other position in

the program would activate the equations attached to the Continue event for the corresponding

production, effectively starting up a separate execution thread at that position. A conditional

breakpoint might be defined by adding an expression to the break statement and enclosing the

delay equation inside a conditional equation.
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program { singlestep: boolean }

program ::= ...

Singlestep -->
singlestep := not singlestep

STATEMENT

Execute -->
If program.singlestep
Then Delay Until Resume

/* Singlestep is an attribute of the program symbol.  Associating a collection
of action equations with the STATEMENT symbol is introduced as a shorthand for
separately associating the collection with each of the alternative STATEMENT
productions. */

Figure 5-5: SingleStepping

The description of singlestepping is similar.  Figure 5-5 depicts Singlestep as an implementor-

defined event that toggles singlestepping on and off, by changing the value of the singlestep

attribute. The delay equation is associated with every STATEMENT production.  If singlestep

mode is on, then the interpreter suspends before the execution of each statement, until the

Resume event.  Since no receiver is specified in the delay equation, it does not matter where the

editing cursor is when the user enters the Resume command. When the user selects the Resume

event, the interpreter awakens and continues execution with the current statement.

trace ::= variable: identifier

Execute -->
program->IO[2]->output :=

program->IO[2]->output
# variable # " = " # <value of variable> # ’^M’

Propagate Continue To self

/* The second I/O channel is designated by the implementor for tracing
variables. <value of variable> uses whatever mapping the implementor defines
for the environment and store. ’^M’ represents a carriage-return.  */

Figure 5-6: Trace Statement Syntax and Semantics

Tracing is another debugging facility that can be described by extending the target

programming language with a special statement.  As illustrated in figure 5-6, a variable might be

traced by inserting a trace statement with the variable name at every point where display of the
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variable’s value is desired.  The trace statement is executed similarly to the write statement: the

variable’s current value is appended to the output stream of a designated I/O channel and

displayed using the standard unparse mechanism.  Alternatively, the explicit trace statement can

be avoided by attaching a conditional equation to the Execute event for the assignment

statement, to perform the trace when any variable in some list (given by an input channel) is

assigned.

6. Implementation Algorithms
The implementation of action equations consists of two parts, translation and run-time support.

Both parts involve an adaptation of the Reps, Teitelbaum and Demers algorithms [52] for

generation of LBEs from attribute grammars.  Reps’ algorithms work roughly as follows.  The

translator takes as input the environment description and produces as output (1) various tables

reflecting the syntax description; (2) a local dependency graph for each production representing

the dependencies among the attributes that appear in its semantic equations; and (3) a procedure

for each semantic equation, which carries out the actual evaluation of the equation.

After each subtree replacement, Reps’ run-time support constructs a scheduling graph by

grafting together two projections of the local dependency graph for the root of the replacement

subtree, one denoting the transitive dependencies among the attributes of the node via its parent

and siblings, and the other the transitive dependencies among the attributes of the node via the

subtree. The attributes represented in the scheduling graph are reevaluated in the order given by

a topological sort of the graph.  The attributes represented by independent vertices (i.e., those

vertices with no incoming edges) are reevaluated first.

If the execution of a semantic equation results in a value different from the previous value of

the attribute, then the scheduling graph is expanded to include the projected local dependency

graphs for all attributes that depend directly on the changed attribute.  The expansion involves

adding edges representing transitive dependencies for all of these attributes that were not

previously part of the scheduling graph.  Whether or not the attribute changed in value, it and all

its outgoing edges are now removed from the graph and evaluation continues with those

attributes now represented by independent vertices.  This process continues until the scheduling

graph becomes empty, which is guaranteed to happen eventually if the attribute grammar is non-

circular. (Algorithms to detect circularity in an attribute grammar are exponential [30], so
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whether or not a given attribute grammar is non-circular is often determined by inspection.)  This

evaluation algorithm is asymptotically optimal in the sense that the number of attribute

evaluations is proportional to the number of attributes that are necessarily reevaluated. (The

efficiency may be improved by maintaining additional data structures, making it possible to

avoid all unnecessary evaluations.)

The adapted set of algorithms operate as follows.  During translation of action equations,

syntax tables and procedures are generated similarly to attribute grammars.  The important

distinction is that a local dependency graph is constructed for each event, whether synthesized or

inherited, associated with each production.  The graph represents the dependencies among the

equations attached to the event rather than the attributes that appear in these equations; this is

necessary because the outputs of action equations may be placed in locations within an attribute

or within the syntax tree and these locations may be computed during action equation evaluation.

In each graph, there are no incoming edges for each delay equation (to ensure that they are

evaluated first), an outgoing edge from every delay equation to every other kind of equation, and

an incoming edge from every other kind of equation to every propagate equation.  There is also a

local dependency graph for the set of equations — constraints and conditionals — not attached to

any event.

After each subtree replacement, a scheduling graph is constructed from the projected local

dependency graphs for the equations not attached to any event and also the two local dependency

graphs (synthesized and inherited) for the equations attached to the standard event corresponding

to the user command that caused the subtree replacement.  In response to each user command

corresponding to a cursor movement or an implementor-defined event, a scheduling graph is

constructed from the two local dependency graphs for the equations attached to that event.  In

either case, the run-time support then follows the topological sort/graph expansion process

described above.

As explained previously, the evaluation of several delay equations is treated as simultaneous

and results in saving the scheduling graph together with a representation of the required

event/receiver pairs.  Once the full set of events has been selected, in any order and spread out

over any period of time, the saved scheduling graph is grafted together with the then current

scheduling graph. The evaluation of several propagate equations is also treated as simultaneous,

and results in a new scheduling graph (by definition, the previous graph is empty except for the
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propagate equations), which includes the two local dependency graphs for all the propagated

event/destination pairs.

The incremental action equation evaluation algorithm is asymptotically optimal in the same

sense as the base incremental attribute grammar evaluation algorithm.  In the case of a subtree

replacement, constraints are treated as if they were semantic equations and evaluated via the

identical mechanism.  In the case of equations attached to an event, each equation is evaluated

exactly once for each selection of the event as required by the semantics of action equations, and

the number of constraint evaluations is proportional to the number of constraints that must be

reevaluated.

7. Conclusions
The purpose of this article is to demonstrate that attribute grammars can be easily extended to

specifying dynamic semantics in addition to static semantics.  The action equations paradigm

does this by making the attribute grammar itself dynamic, where some semantic equations are

active and others are passive.  Equations are changed from passive to active to passive again

according to external user commands and internal computations involving the propagate and

delay equations.  Action equations also augment attribute grammars with limited side-effects,

which make it possible to maintain the state of program execution and the history of user

interactions with the environment.

This extension of attribute grammars was developed to permit generation of LBEs that support

both static and dynamic semantics.  Attribute grammars previously permitted generation of

environments that support only static semantics.  Action equations can also be applied outside

LBEs to generate interpreters and debuggers, just as attribute grammars have been used to

generate compilers.
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