
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-2022

An Investigation of Data Storage in Entity-Component Systems An Investigation of Data Storage in Entity-Component Systems

Bailey V. Compton

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Software Engineering Commons

Recommended Citation Recommended Citation
Compton, Bailey V., "An Investigation of Data Storage in Entity-Component Systems" (2022). Theses and
Dissertations. 5353.
https://scholar.afit.edu/etd/5353

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact richard.mansfield@afit.edu.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F5353&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=scholar.afit.edu%2Fetd%2F5353&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/5353?utm_source=scholar.afit.edu%2Fetd%2F5353&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

AN INVESTIGATION OF DATA STORAGE
IN ENTITY-COMPONENT SYSTEMS

THESIS

Bailey V Compton, 2nd Lieutenant, USAF

AFIT-ENG-MS-22-M-018

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

AFIT-ENG-MS-22-M-018

AN INVESTIGATION OF DATA STORAGE IN ENTITY-COMPONENT

SYSTEMS

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Computer Science

Bailey V Compton, B.S.C.S.

2nd Lieutenant, USAF

March 24, 2022

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENG-MS-22-M-018

AN INVESTIGATION OF DATA STORAGE IN ENTITY-COMPONENT

SYSTEMS

THESIS

Bailey V Compton, B.S.C.S.
2nd Lieutenant, USAF

Committee Membership:

Douglas D Hodson, Ph.D
Chair

Major Richard Dill, USAF, Ph.D
Member

Michael R Grimaila, Ph.D
Member

AFIT-ENG-MS-22-M-018

Abstract

Entity-Component Systems (ECS) have grown vastly in application since their

introduction more than 20 years ago [1]. Providing the ability to efficiently manage

data and optimize program execution, ECSs, as well as the wider field of data-oriented

design, have attained popularity in the realms of modeling, simulation, and gaming.

This manuscript aims to elucidate and document the storage frameworks commonly

found in ECSs, as well as suggesting conceptual connections between ECSs and re-

lational databases. This formal documentation of the in-memory storage formats

of entity-component systems affords the United States Air Force, the Department

of Defense, and the software engineering community a greater understanding and

applicability of the paradigm.

iv

AFIT-ENG-MS-22-M-018

For my parents.

Thanks for always answering the phone and never asking how school is going.

v

Acknowledgments

I would like to thank my advisor, Dr. Doug Hodson, for his constant support

and guidance throughout this research. Your knowledge and initiative have been

invaluable to me.

I would also like to thank my other committee members, Dr. Michael Grimaila

and Maj Richard Dill, for their input and assistance with this document.

vi

Table of Contents

Page

Abstract . iv

I. Introduction . 1

1.1 Problem Background. 1
1.1.1 A Brief Introduction to Entity-Component

Systems . 2
1.1.2 ECS Applications . 2
1.1.3 ECS Libraries . 3
1.1.4 The Storage Dilemma . 6

1.2 Research Objectives . 8
1.3 Document Overview . 8

II. Paper I: Comparison of Archetypal Entity-Component
Systems and Relational Databases . 10

III. Paper II: Survey of In-Memory ECS Contiguous Storage
Types . 15

IV. Conclusions . 24

4.1 Research Summary . 24
4.2 Future Work . 25

Bibliography . 26
Acronyms . 28

vii

AN INVESTIGATION OF DATA STORAGE IN ENTITY-COMPONENT

SYSTEMS

I. Introduction

1.1 Problem Background

In 2009, Noel Llopis published an article titled ”Data-Oriented Design (Or Why

You Might Be Shooting Yourself in the Foot with OOP)” [2]. In this article, Llopis

expounds upon the need for software development to shift from a mindset of object-

oriented programming (or procedural programming, functional programming, or any

other paradigm) to a data-first mindset. In his proposed paradigm, data is the central

foundation of any program. This is not a revolutionary idea - storage, referencing,

and manipulation of data is the impetus for creating any program. Data-oriented

design of programs, however, focuses solely on how the execution of the program

changes the data. Then, functionality is created to match the desired changes.

Since the publishing of the 2009 article, data-oriented design has grown in pop-

ularity, gaining traction in game engines and other applications that require vast

amounts of data. As popularity has grown, documentation has as well. In 2018,

Richard Fabian published a book on data-oriented design, documenting the need for

data-oriented design and detailing best practices when creating an application using

this paradigm [3]. Early in the text, Fabian includes a chapter regarding relational

databases, discussing the fact that ”techniques we used to use to defend against la-

tency from CPU to hard drive, now apply to memory” [3]. It was this chapter in a

data-oriented design book that motivated the research into the relationship between

1

Entity-Component Systems (ECS) and databases conducted in this thesis.

When initially reviewing resources to begin this research, it was found that there

were few academic and/or peer reviewed sources relating to data-oriented design, and

even fewer relating specifically to entity-component systems. Recognizing the need

for documentation in this field, this thesis intends to fill a gap in documentation in a

quickly growing field in software engineering.

1.1.1 A Brief Introduction to Entity-Component Systems

ECS are a paradigm of data-oriented design that specifically separate program be-

havior from program data. Entities and components are abstractions of the program

data. The system represents program functionality itself.

Within an ECS, components are the actual values of program data that will be

manipulated. Components can be represented by any data type or data structure,

but work most efficiently when in the most atomic form possible. Components are

the data that motivates program execution.

Entities are the abstract concepts by which components are grouped and refer-

enced. Entities are normally simple identifiers.

The system within an ECS refers to the behavior and functionality within the

program that uses and manipulates the data stored in components and referenced by

entities.

Entity-component systems further separate program behavior from program data

by requiring data to be accessed through a query system.

1.1.2 ECS Applications

ECSs can be utilized in essentially any program or application. However, the

computational efficiency, especially in data-intensive applications, afforded through

2

ECS-based systems makes it popular in the fields of gaming and simulation.

The 2018 National Defense Strategy (NDS) outlines the strategic approach for

development of Department of Defense (DoD). One of the three lines of effort for na-

tional defense requires the United States to ”Build a More Lethal Force” [4]. In direct

support of this line of effort, the DoD needs to modernize key capabilities, including

Command, Control, Communications, Computers and Intelligence, Surveillance, and

Reconnaissance (C4ISR) and the warfighting domains in space and cyberspace. ECSs

can be leveraged to support these efforts through effectively modernizing aging DoD

systems and optimizing execution of current functional needs. The DoD also employs

data-intensive applications, such as simulated aircraft trainers, that would benefit

from any optimization possible.

1.1.3 ECS Libraries

Although there were only three Entity-Component System (ECS) libraries selected

for survey in the second paper in this thesis, eight were considered. These implemen-

tations are outlined in this section, as well as why they were or were not selected for

further research.

1.1.3.1 Bevy

Bevy, written in Rust, provides a fully-equipped game engine using a custom ECS

system. Library functionality utilizes many structures and functions native to the

Rust language, making it both efficient and easy to understand. The underlying ECS

system providing data storage to Bevy was previously based of the Hecs library, but

has since been split from Hecs to its own ECS implementation [5].

Bevy was selected for examination in the survey because of its robust functionality

and its multiple storage frameworks with which to organize data.

3

1.1.3.2 EnTT

EnTT is a concise, header-only C++ ECS library. Notably used in the popular

video game Minecraft, EnTT provides robust functionality on top of entity-component

storage. The complexity of implementation of EnTT resulted in its removal from the

list of candidates for this research. [6]

1.1.3.3 Esper

Esper is a compact ECS library written in Python. It drew interest for this

research given its small codebase and novel implementation. While it does not have

quite the extensive documentation boasted by the other libraries selected for survey,

it does provide interesting insight into the possibilities of implementations of ECS

outside of the standard sparse set and archetype. [7]

1.1.3.4 Flecs

Flecs was created in C as an efficient entity-component system for games and sim-

ulations with large numbers of entities. It features a native Application-Programmer

Interface (API) for integration with ”most game engines and scripting languages.”

Flecs specifically markets its use of archetype storage and structure of arrays organi-

zation to process millions of entities at each iteration of execution [8].

Flecs was ultimately chosen to be surveyed due to its in-depth documentation, as

well as its involved development community and extensibility.

1.1.3.5 Legion

Legion is a popular ECS implementation in Rust, offering many of the same func-

tions as Bevy or Shipyard. It provides out-of-the-box functionality to developers, with

”minimal boilerplate.” However, Bevy had already been selected for this research, and

4

it was determined that the two were similar enough implementations that only one

was necessary to be surveyed. [9]

1.1.3.6 Hecs

Hecs (a handy ECS) was considered as a possible Rust implementation for this

research. The hecs library offers an uncluttered ECS implementation. Hecs provides

little guidance on the organization of data stored within the system, instead opting for

entirely developer-defined organization.. Due to the nature of the survey conducted

in this research, it was ultimately decided that other implementations would better

suit the requirements. [10]

1.1.3.7 Shipyard

Shipyard was created as a competitor to Specs in the Rust-based ECS space.

Shipyard follows a data organization structure similar to EnTT. It was eventually

removed from the list of candidates for this research because its implementation is

derived from other ECS libraries already considered as candidates. [11, 12]

1.1.3.8 Specs

Specs, a Rust-based ECS library, was also considered for this research. It provides

great extensibility and the ability to add functionality to the ECS itself while still

utilizing the library. Specs supports five different storage frameworks, none of which

exactly line up with the more common archetype or sparse set organizations. It was

decided that the addition of more storage frameworks would be too broad for the

scope of this particular endeavor. [13]

5

1.1.4 The Storage Dilemma

Because the program data is the foundation of entity-component systems, the

storage of that data requires thoughtful planning. Array storage maximizes the po-

tential for Single Instruction, Multiple Data (SIMD) processing of data, which, in

turn, maximizes potential operating efficiency [14]. There are two possible ways to

implement array storage - Array of Structures (AoS) or Structure of Arrays (SoA)

[14]. Both AoS and SoA have advantages and disadvantages. There is not one that

invariably outperforms the other.

Structs are developer-defined data structures that combine multiple existing data

types to be treated as a single structure within the program [15]. Data structures

contained within a struct are neighboring in memory - that is, data within the struct

is contiguous. Both AoS and SoA leverage the ability of structs to store varied data

types neatly and contiguously in memory.

Storage organized based on a SoA framework creates a single struct to hold mul-

tiple arrays of data. The arrays within the struct are not required to be the same

length or hold the same data type. In this organization, all data of a certain type or

use in the struct is stored contiguously in memory. An example implementation of a

simple structure of arrays is shown in listing I.1.

Listing I.1: Psuedocode implementation of Structure of Arrays

struct SoA {

A a[100];

B b[100];

C c[100];

};

A structure of arrays organization can be beneficial when a program only requires

6

certain components from within an entity. When the query for those components

occurs, only the necessary arrays of components are loaded into the CPU cache,

saving clock cycles and cache space when compared with loading all components.

The AoS frame work organizes data by grouping each set of related data into a

struct and creating an array of that struct. As such, the data within each struct is

contiguous, meaning that data of the same type are stored every nth type in memory,

where n is the number of data types in the structure. In other words, all data types

within a certain struct are stored together, before the next struct is stored as a

neighbor. As example implementation is shown in listing I.2

Listing I.2: Psuedocode implementation of Array of Structures

struct AoS {

A a;

B b;

C c;

};

AoS aos [100];

Figure 1 visualizes the in-memory arrangement of a block of data in both AoS and

SoA formats. The array of struct[ure]s in the figure stores each datum sequentially,

by structure, such that the array stores data in a repeating pattern of data types. The

struct[ure] of arrays clearly shows that all data of a certain type is stored contiguously

before the next data type is stored.

7

Figure 1: Diagram of AoS and SoA organizations in memory [16]

1.2 Research Objectives

This thesis aims to elucidate the mechanisms by which data is organized and stored

within entity-component systems. To achieve this goal, the following objectives were

outlined:

• Document the common storage models used by entity-component systems.

• Recognize the similarities between relational databases and ECSs.

• Discuss the in-memory organization of ECS frameworks.

1.3 Document Overview

This thesis investigates different aspects of entity-component systems. This intro-

duction gives an overview of the problem domain that prompted this research, and

the goals that guided the course of the research.

Following chapter I, there are two article-style papers discussing different top-

ics of entity-component systems. The first, a conference-length article, discusses

the relationship that can be found between entity-component systems and relational

databases. This research can be found in chapter II.

8

The second paper, in chapter III, surveys three open-source entity-component

system libraries to better understand how data is stored within programs that employ

ECS storage.

Chapter IV synthesizes the previously discussed research in chapters II and III to

document the nature of entity-component systems and consider future research on

the topic.

9

II. Paper I: Comparison of Archetypal Entity-Component
Systems and Relational Databases

The following paper, “Comparison of Archetypal Entity-Component Systems and

Relational Databases,” was submitted and accepted by the 2021 World Congress in

Computer Science, Computer Engineering, and Applied Computing; it was published

in July of 2021.

10

Comparison of Archetypal Entity-Component Systems and
Relational Databases

Bailey V. Compton, Douglas D. Hodson, Richard Dill, and Michael R. Grimaila
Air Force Institute of Technology, WPAFB, OH, USA

emails: bailey.compton@afit.edu, doug@sidechannel.net, richard.dill@afit.edu,
michael.grimaila@afit.edu

Abstract— The Entity-Component-System (ECS) architec-
tural design pattern separates data from computer logic (i.e.,
behavior) - components define data, systems define behavior.
As such, it embraces the ideas espoused by Data-Oriented
Programming. Relational databases can be compared to
ECS implementations through emphasis on organization and
retrieval of data. Conceptualizing archetypal ECS tables as
single-table, standalone databases allows for Data-Oriented
programmers to employ database standardization practices
to the organization of data in ECS applications.

Keywords: ECS, Entity-Component System, Relational
Databases, Data-Oriented Design, Data-Oriented Programming

1. Introduction
The mapping of objects for application development has

required more and more overhead as the requirements for
applications change over time [1]. In order to combat the
growing workload required by object-oriented programming,
a new paradigm has emerge - data-oriented design. As data-
oriented development grows in usage and popularity, efforts
must be made to connect data-oriented design principles
to existing research to expedite the investigation of the
applications of data-oriented applications.

2. Background
2.1 Data-Oriented Design

All programs exist to transform data [2]. Many frame-
works and paradigms conceptualize how data should be
manipulated and transformed within an application. Object-
oriented programming (OOP) gained popularity as a devel-
opment paradigm, as it allows developers to envision data
as objects that interact with other objects by exchanging
messages. OOP combines the data that is being transformed
with a set of functions that manage it. In contrast, data-
oriented design (DOD), also referred to as data-oriented
programming (DOP), emphasizes separation of data and the
transformation thereof. Under DOD, data encapsulation is
minimized as much as possible, instead opting for plain old
data (POD) to be stored as simply and efficiently as possible.
OOP couples the problem domain directly with the data,
which can lead to issues with extensibility when applications

need to be updated. Data-oriented design lacks such flaws,
since data remains separate from implementation [3]. DOD
also tends to be more efficient when operating on large
amounts of data. Data-oriented design has been shown to
outperform object-oriented programming in modeling &
simulation applications, which execute on copious amounts
of data [4].

2.2 Entity-Component Systems
Entity-component system (ECS) is a software design

pattern that can be classified as a form of data-oriented
programming. ECS separate data from system execution,
organizing information elements into entities, which consist
of a set of components. Data that is to be read, stored, and
manipulated by a system uses queries. Entity-component
system approaches are favored by game and simulation
developers, especially, because entity-component systems
tend to handle large amounts of game objects (data) well,
and offer easy extensibility [5].

2.2.1 Data Querying
Entity-component systems use queries to interface with

organized data, in order to create, read, update, or delete the
data it is referencing within the application – but queries
do not provide any extra functionality. Any functionality re-
quired past data storage and retrieval is the responsibility of
the application itself. Querying the data to return components
or entire entities allows the developer to organize data in the
most efficient fashion for their specific application. Advance
knowledge of how data will be referenced and manipulated
creates greater opportunity for optimal execution of the
system as a whole.

2.2.2 Data Storage
There are several forms of implementations of entity-

component systems. Forms differ in the organization of
data within program memory, while access mechanisms to
the data remain the same. The two most popular storage
organizations are sparse set and archetypal.

Sparse set ECS is optimized for applications that may have
many entities, but there are few or no entities that contain
the same components. In a sparse set implementation, com-
ponents are stored in arrays of each data type, with simple

unsigned integer indices referencing the entity the compo-
nent corresponds to. This structure benefits applications that
require a lot of insertion or deletion of components, since
those operations can occur in near constant time. The trade-
off, however, is that the random access patterns required for
reading or manipulating these data are inefficient [6], [5].

Archetypal ECS, in contrast, benefits applications with
many similar entries, with the same components. In an
archetypal implementation, entities are stored as rows in
a table, which is called an archetype. Each entity in an
archetype contains the same components, with each com-
ponent stored as a column in the table. There may be
one or many archetypes in the system, depending on the
specific requirements of the application. The arrangement
of data according to entity allows for query evaluation and
entity retrieval operations to occur in constant time, on
average [5], [6]. However, the search and data movement
required for insertion and deletion of entities or components
makes those operations more expensive than the sparse
set implementation. For this research (i.e., comparison to
relational databases), the ECS storage mechanism of interest
is archetypal, since it seems to closely resemble the organi-
zation of a database table.

2.3 Relational Databases
Relational databases have long been popular for storing

and using large amounts of data, from online storefronts
to medical records. In a relational database, information is
arranged in tables, where each row represents a single record
and each column represents a data field that record should
contain. Each table in the database will have one or more
fields that also occur in another table. These fields are keys,
which allow users to connect records through queries to the
database. Databases logically organize data in a form that
allows users to retrieve the exact information they require
with little knowledge of the content or organization of the
database itself.

2.3.1 SQL
In order to access information in a relational database,

users must execute a query. Over the years that relational
databases have developed, many query languages have
evolved, but most query languages in use today are based
on the Structured Query Language (SQL). SQL queries can
create, read, update, and delete information from tables,
and can also combine data from multiple tables, using key
fields to combine records. SQL also offers many time-saving
functions to build into queries, such as number rounding, text
formatting, and finding sums and averages of columns [7],
[8].

2.3.2 Database Normalization
Database normalization serves to limit the probability

of data inconsistencies and redundancies. Normalizing a

database aims for each item of data to be stored in the
database once, because any more stores of the same in-
formation would be superfluous. The common levels of
normalization are briefly outlined below. Each level builds
on the previous, so any database normalized to a certain level
is also normalized to every level below it.

First normal form (1NF) is fulfilled by any relational
database. The only requirement of 1NF is that all records
in a table contain the same number of fields, and each field
may only contain a single atomic datum. What constitutes
an atomic value for each field may be left to the structure
and use of the database [9].

Second normal form (2NF) requires records using com-
posite keys (keys consisting of more than one field) to
not contain any fields that relate to a subfield of a key.
To fulfill 2NF, tables that contain information specific to
a subfield of a key should be divided into multiple tables,
separating information about the key’s subfield into its own
table. Tables that do not employ composite keys and fulfill
1NF automatically fulfill 2NF [9].

Third normal form (3NF) requires all nonkey fields in a
record to not depend on any other nonkey fields. If there are
nonkey fields in a record that can be logically based on other
fields, the record should be decomposed into two records,
storing related information in a separate table that can be
referenced by a single reference fact in the original table. [9]
There is a more restrictive form of 3NF referred to as Boyce-
Codd normal form (BCNF), that further limits redundancies,
but has potential to not protect dependencies [10].

Fourth normal form (4NF) requires fields within a table
to be logically related to all other fields within the table.
If two facts within a record are not related, they should be
decomposed into two separate tables [9].

Fifth normal form (5NF) attempts to generally encompass
decomposition of information that is not addressed in sec-
ond, third, or fourth normal forms. 5NF is fulfilled if and
only if every piece of information possibly needed to be
queried can be created by join functions between tables [11].

Normalization does require a trade-off, however. In order
to reduce redundancy, data that is usually queried at the
same time (such as a field for street address and a field for
city) may be split to create the most “atomic” field entry
possible. This means that in order to retrieve an address
record, two fields must be pulled instead of one – every time.
However, depending on the uses of the database, this data
can be denormalized and combined to optimize performance.
Permanent linkages in data constitute atomic values, but
determination of what linkages are permanent is subjective
to the application of the database in question.

3. Relationship between ECS and Rela-
tional Database Tables

It is simple to see the comparison between an archetypal
implementation of ECS and a relational database. The basic

functions of a data retrieval system are creation, reading,
updating, and deletion. Both entity-component systems and
relational databases, as data retrieval systems, provide these
basic functions. The organization of ECS entities into tables,
with table makeup determined by the components defined
by an entity, parallels the organization of database tables in
first normal form. In fact, archetypes can be conceptualized
as single-table databases. Each table within an archetypal
ECS can be thought of as a standalone database, that
is queried and may benefit from normalization. There is
potential, depending on the application, for the size of the
database to grow past a single table, but that depends on the
implementation of the ECS framework on a case-by-case
basis.

3.1 Data Queries
One of the significant factors that facilitates a comparison

between an archetypal ECS and a relational database is the
querying of data from the system. While SQL and its ilk
may provide additional functionality for ease-of-use, both
database query languages and ECS queries provide the same
four main operations – create, read, update, and delete.
These are the four operations of any information storage and
retrieval system, and anything else built into a query is extra.
Both forms of queries also allow for retrieval of multiple
entries at once, up to an entire table, as opposed to a single
record at a time, iteratively. One difference in the query
functionalities of ECS and databases is the join and union
functions. SQL allows for the resulting table of data (that
is a combined view of several joined disjoint tables), using
queries. It requires minimal knowledge of the tables (only
the necessary fields) to create a new record or field from
two or more tables. However, in the most generalized form
of this comparison, each archetype in the ECS is viewed as
its own, standalone database. As such, the need for union or
join operations is nonexistent.

3.2 Normalization
One of the most important functions of a relational

database is limiting data redundancy with normalization.
If ECS is viewed as a database, it logically follows that
the tables within the ECS should be normalized. If an
ECS framework is used for a modeling and simulation
application, such as a flight model, there is no reason
to duplicate information about the aircraft being modeled.
Querying extra information will just waste clock cycles and
storing that information will waste storage space. Database
normalization focuses on normalization of records of a single
table, so a normal form may be applied to an ECS table with
minimal adjustment of thought. Normalization provides a
standard by which archetypes can be developed and judged.
Database normalization has been practiced for more than
thirty years, and many references and examples are readily

available to ECS developers that can be used for organizing
and normalizing their archetypes.

4. Conclusions
The concept of relational databases was first published

in 1970 [12], and the first paper proposing a standardized
query language followed quickly after in 1974 [7]. In the
more than fifty years since the conceptualization of relational
databases, usage, development, and research in the field
has risen exponentially. Connecting the inner workings of
entity-component systems and relational databases allows
data-oriented design users and developers to benefit from
the depth of knowledge of database systems. This shift in
mindset for ECS, starting with the archetypal storage format,
opens the door for potential leaps and bounds of growth of
knowledge in applications using ECS.

5. Disclaimer
The views expressed in this paper are those of the authors

and do not reflect the official policy or position of the United
States Air Force, the Department of Defense, or the U.S.
Government.

References
[1] T. Neward, “The Vietnam of Computer Science,” 2006. [Online].

Available: http://blogs.tedneward.com/post/the-vietnam-of-computer-
science/

[2] M. Acton, “Data-Oriented Design and C++,”
in Cpp-Conference, 2014. [Online]. Available:
https://www.youtube.com/watch?v=rX0ItVEVjHc

[3] R. Fabian, Data-Oriented Design, C. Ring, Ed., 2018. [Online].
Available: www.dataorienteddesign.com

[4] J. Vagedes, “A study of execution performance for rust-based object
vs data-oriented architectures,” Ph.D. dissertation, Air Force Institute
of Technology, 2020.

[5] S. Mertens, “ECS FAQ,” 2021. [Online]. Available:
https://github.com/SanderMertens/ecs-faq

[6] C. Anderson, “Bevy 0.5,” p. 2021, 2021. [Online]. Available:
https://bevyengine.org/news/bevy-0-5/

[7] D. D. Chamberlin and R. F. Boyce, “Sequel: A Structured Query
Language,” IBM Research Laboratory, San Jose, California, Tech.
Rep., 1974.

[8] D. D. Chamberlin, “Early history of SQL,” IEEE Annals of the History
of Computing, vol. 34, no. 4, pp. 78–82, 2012.

[9] W. Kent, “A simple guide to five normal forms in relational database
theory,” Communications of the ACM, vol. 26, no. 2, pp. 120–125,
1983.

[10] R. Wakefield, “BCNF and 3NF,” Colorado State University, Fort
Collins, CO, Tech. Rep., 2020.

[11] R. Fagin, “Normal forms and relational database operators,” IBM
Research Laboratory, San Jose, California, Tech. Rep., 1979.

[12] E. F. Codd, “A Relational Model of Data for Large Shared Data
Banks,” Communications of the ACM, vol. 26, no. 1, pp. 64–69, 1983.

Author Biographies
BAILEY V. COMPTON is a 2nd Lieutenant currently
stationed at Wright Patterson Air Force Base. She is Master’s
Student at the Air Force Institute of Technology (AFIT)
studying Computer Science with an emphasis in Software
Engineering. Lt Compton is a 2020 graduate of the United

States Air Force Academy, where she studied Computer
Science.
DOUGLAS D. HODSON is an Associate Professor of
Computer Engineering at the Air Force Institute of Technol-
ogy (AFIT), Wright-Patterson AFB, Ohio USA. He received
a B.S. in Physics from Wright State University in 1985, and
both an M.S. in Electro-Optics in 1987 and an M.B.A. in
1999 from the University of Dayton. He completed his Ph.D.
at the AFIT in 2009. His research interests include computer
engineering, software engineering, real-time distributed sim-
ulation, and quantum communications. He is also a DAGSI
scholar and a member of Tau Beta Pi.
MAJOR RICHARD DILL is an Assistant Professor of
Computer Science at the Air Force Institute of Technology
(AFIT), Wright-Patterson AFB, Ohio USA. He received a

B.S. in Computer Science from the University of Maryland
at College Park in 2004, and both an M.S. in Computer
Science in 2008 and a Ph.D. in 2018 from AFIT. Major Dill’s
research interests include computer security, algorithms, and
artificial intelligence.
MICHAEL R. GRIMAILA (BSEE 1993; MSEE 1995;
Ph.D. 1999, Texas A&M University) is a professor and head
of the Department of Systems Engineering and Management
at the Air Force Institute of Technology, Wright-Patterson
Air Force Base in Ohio, USA. He is a member of Tau
Beta Pi, Eta Kappa Nu, and the Association for Computing
Machinery, as well as a Senior Member of the IEEE, and a
Fellow of the Information System Security Association. He
can be contacted via email at michael.grimaila@afit.edu.

III. Paper II: Survey of In-Memory ECS Contiguous
Storage Types

The following paper, “Survey of In-Memory ECS Contiguous Storage Types,” will

be submitted to an appropriate journal at a later date.

15

Survey of In-Memory ECS Contiguous Storage Types

Bailey V. Compton, Richard Dill, Douglas D. Hodson, and Michael R. Grimaila
Air Force Institute of Technology, WPAFB, OH, USA

emails: bailey.compton.1@us.af.mil, richard.dill@afit.edu, doug@sidechannel.net,
michael.grimaila@afit.edu

Abstract— Entity-component systems continue to grow in
popularity and relevance in the software development space.
However, there is little academic reference available doc-
umenting the commonly accepted forms of storage within
these systems. This research attempts to mitigate that
void of information by surveying three open-source entity-
component system libraries, implemented in three different
languages, to ascertain the in-memory organization of data
in these applications. Two common forms of data organiza-
tion were investigated - archetype and sparse set - and are
also included in this research.

1. Introduction
As computer applications are required to process more

and more data at ever increasing speeds and degrees of
efficiency for normal execution, developers and engineers
are faced with two options to fulfill the requirements. The
first is to increase the hardware efficiency of computing
machines, which computer engineers have been able to
achieve with some success. The second line of effort is
to optimize the organization of data before the program
executes, to the benefit of the hardware. This organization of
back-end application data requires prior consideration from
the developer to construct a schema with which to store and
retrieve information.

Prior consideration of data organization is a mindset
shift from the pervasive ideas of today. Object-oriented
programming, which interweaves data and functionality in
the mind of the developer, is widely taught and used in
computer science. Data-oriented design of programs (also
referred to as data-oriented programming) treats the infor-
mation manipulated in a program as completely separate
from behavior of the program [1]. Any application simply
retrieves, manipulates, and stores information, instead of
viewing every aspect of the program as an object that can
manipulate data and/or be manipulated.

This paper investigates Entity-Component Systems
(ECS),a paradigm of data storage and retrieval in memory for
applications. This research details this paradigm, analyzes
several popular implementations thereof, and compares them
to generate a deeper understanding of the pattern as a whole.

2. Entity-Component Systems
The entity-component system is divided into three dis-

tinct segments - entities, components, and the system. Data

used in an ECS-based program constitutes the components.
These components ideally exist in their most atomic form,
commonly a plain data type, such as a floating point number
or integer. However, if more than one individual datum will
be always be used and/or referenced at the same time, they
may be combined into a single component consisting of a
single complex data structure.

Entities within the program serve as the method of
referencing and conceptually grouping components - an
entity serves as a unique identifier that can be applied to
components. Entities may be connected to an unlimited
number of components. These associations are determined
by the needs of the application. The functions used by the
application constitute the system, which defines behavior in
relation to entities based on components. Systems access
components for reference and modification through queries
[2].

An example configuration of an ECS is visualized in
Figure 1. In this example, Entities A and B both reference
four components - Translation, Rotation, LocalToWorld, and
Renderer. Entity C only references Translation, Rotation,
and LocalToWorld. The system references the components
Translation and Rotation, conducts a behavior (in this case,
simple multiplication), and stores the result into the Local-
ToWorld components.

Fig. 1: Block Diagram of Entity-Component System [3]

Many ECS implementations organize components con-
tiguously in memory. The use of contiguous storage allows
for the use of Single-Instruction, Multiple-Data (SIMD)
parallel processing. The use of SIMD processing allows for
many similar data elements to be operated on simultane-
ously, as opposed to sequentially [2]. The act of enabling

and using SIMD processing on a data vector is referred to
as vectorization. In data-intensive applications, the impact
of simultaneous execution is easily observed in speed and
efficiency of execution [4]. Because the developer is deter-
mining the configuration of application data within memory,
neighboring data is much more likely to be used at similar
times. This minimizes cache misses and makes referencing
components even faster. There are several forms of internal
data storage configurations that are popular in ECS systems.
The two most popular in-memory storage frameworks for
ECS implementations are archetype and sparse set.

2.1 Archetype
Storing components within an ECS is a complex problem.

It is beneficial for program efficiency to store like com-
ponents together, which maximizes the potential for SIMD
processing in contiguous arrays [5]. However, it logically
follows that the components of a certain entity will com-
monly be used together, so it would be more efficient to store
components by entity. Organizing components contiguously
is not a trivial task.

As an example, take a program with 3 entities, all with 2
components, a and b. Two arrays can be created, one storing
all a components and one storing all b components. In this
case, array indexes can be used as entity identifiers, since
both component arrays are parallel.

Now suppose that component b must be removed from the
entity at array index 1. The array holding the b components is
no longer contiguous, which means it cannot be vectorized,
or use SIMD (see Figure 2).

Fig. 2: Diagram of a and b arrays after removal of b[1] [5]

It is a trivial set of operations to make these components
contiguous in memory again. The entities at indexes 1 and
2 are swapped, resulting in the following organization (see
Figure 3) [5].

Fig. 3: Diagram of a and b arrays after swapping storage of
indexes 1 and 2 [5]

As long as there are only 2 components that need to be
stored, components can be stored in a vectorizable config-
uration (Figure 4). However, as soon as a third component
is added to the system, contiguous storage becomes signif-
icantly more complex. If every combination of components
is present in the system’s entities, there is no way to store
all components of a type contiguously (Figure 5).

Fig. 4: Diagram of 2-component contiguous storage [5]

Fig. 5: Diagram of 3-component storage [5]

This problem can be extrapolated to any set of components
larger than 2. Dubbed the "ABC Problem," developers
needed a different strategy with which to store components
in memory.

As a solution to the "ABC problem" [5] archetype-based
storage systems organize data into “tables” [2], [6], [7]. A
table can be visualized as a spreadsheet or an individual
table in a relational database. Every column of the table
contains one component, so that each individual component
within the column is of the same data type as all others in
the column. Each row of the table corresponds to a specific
entity within the system, such that each entity relates to one
of each component it intersects in the table.

In order for this structure to work correctly, each table
only contains one type of entity – that is, each specific
combination of components that make up an entity is given
its own unique table. Since each combination of component
types only correspond to one table, there is no duplication
of entities between tables.

This organization of components is illustrated in Figure 6.
In this example, there are four archetypes. The first contains
all components for entities A, B, C, and D. These four enti-
ties each contain two components - 1 and 2. The subsequent
tables follow the same pattern, with 1−∞ entities assigned
to the archetype and 0 − ∞ components assigned to each
entity. If there are no entities stored in an archetype, the table
does not exist. As shown in Figure 6, archetypes can overlap
in what individual components they contain, but each table
has a unique combination of components. Every entity will
only be stored in one archetype table.

Fig. 6: Block Diagram of Archetype Tables in an ECS

This tabular organization of data allows for swift return
of query results and quick iteration of components within
program execution [7]. This speed of referencing data comes
with drawbacks. Due to each type of entity having its
own archetype (table), addition or deletion of components
on a specific entity, or addition of an entire entity, is an
expensive operation. Any change made to an entity requires
the application to search for the correct archetype for the
new entity, create a new archetype (if necessary), add the
new entity to the correct table, and remove the old entity
from the previous table.

To facilitate transfer of entities between archetypes, it
is common for entity-component systems to implement an
archetype graphing system [5]. Figure 7 shows an example
of such a graph. In the example, each edge of the graph
represents a component that can be added or removed from
the node (archetype) it is leaving, depending on whether the
component of that edge is present in the table.

Fig. 7: Diagram of Archetype Graph [5]

2.2 Sparse Set
Archetypal storage systems make for quick retrieval and

iteration of data, but some applications value addition and
removal of components over retrieval. In that case, a sparse
set storage framework would be more beneficial.

While archetypal storage systems organize data by entity,
sparse set storage systems group data by component. Every
component of the same type is grouped into arrays and stored
in program memory. In order to efficiently manage this data,
a sparse set data structure is used. Sparse set arrays are not
single, simple contiguous vectors. A sparse set data structure
is instead two arrays, one densely packed and one sparsely
populated [8], [9], [10], [11].

The two vectors within the sparse set structure are based
on each other. The densely packed array contains integers,
which are entity identifiers. The order of entities within
this array is arbitrary. The sparsely packed array contains
integers, such that the data stored in sparse[n] is the index
of where the entity identified by n is stored in the dense
array. In other words, the index of a certain datum in the
sparse array is the entity ID and the datum in that index is
the location of that entity ID in the dense array [12]. This
concept is visualized in Figure 8.

Fig. 8: Diagram of sparse set arrays [8]

By storing entity information in two arrays containing the
same volume of data, the program trades memory efficiency
for computational efficiency. That is, while 2n memory units
are required to store n entity identifiers, an entity lookup
operation runs in constant time [9]. Both arrays of data
are necessary, as each array serves a different purpose. The
dense array exists to allow for efficient access and iteration
of all entities in the system, while the sparse array serves
to allow single entity lookups to operate as efficiently as
possible. To look up whether an entity is present in the sparse
set, it is a single boolean operation:

dense[sparse[entityID]] == entityID

If this operation returns true, the entity is present in the
sparse set structure. If the two vectors do not contain
matching information for a certain set of indices, the check
will return false and the entity is not in the sparse set.

To add an item to the sparse set, the new item (entity) is
pushed back onto the dense array, setting the value of the
new item to an empty index in the sparse (an available entity
ID). The empty index in the sparse array is set to the index
of the entity ID. See Figure 9 for an example.

Fig. 9: Diagram of addition of entity to sparse set [8]

Removing an entity from the structure is slightly more
complex, but still relatively simple. Using the arrays in
Figure 9 as an example, the entity with identifier 6 (index 3
in the dense array) will be removed. In order to remove this
entity, it will be swapped with the last entity in the sparse
array. In this example, entity 7 is redesignated as entity 6,
and sparse[6] is set to 1, the index of the entity ID. The
old entity is simply popped off the end of the dense array.
Figure 10 shows this removal.

Fig. 10: Diagram of removal of entity from sparse set [8]

Because the entity ID of 7 has been removed from the
dense array, a lookup of using entity ID 7 will not pass.
Therefore, sparse[7] does not require resetting.

Components are stored in parallel to the dense array of
entities, such that the entity at dense[n] has component data
of component[n] [12]. Each component type has its own
densely packed array. If an entity does not have a certain
component, that entity’s position in the parallel component
array is set to null or another tombstone value that readily
indicates that the value at that position is not a component
value. Because components are stored parallel to entities,
component addition to and removal from an entity is as
simple as setting a single value in an array.

A tombstone value can also be helpful when searching for
entities in the sparse array. When an entity is removed from
the dense array, the location of that entity’s identifier is set
to the tombstone value [8]. The check for an entity within
the sparse set then becomes

sparse[entityID] != tombstone

This new look up operation does not require accessing the
dense array at all, saving clock cycles in the program.

Given that every entity identifier is stored in the densely
packed array contiguously in memory, it is simple and

efficient to iterate through all entities within a program. Sim-
ilarly, as components are arranged into contiguous arrays, it
is cache-friendly and efficient to load and iterate all instances
of a component [12], [8].

Sparse set organization of data is beneficial to applications
that often manipulate the component makeup of entities or
need to reference all components of a certain type at one
time. However, these programs accept a trade-off. Querying
all components for a certain entity or entities is an expensive
operation, as each array of components must be loaded and
referenced individually [7].

2.3 Structure of Arrays and Array of Struc-
tures

Both archetype and sparse set storage frameworks aim
to maximize efficiency through the use of vectorization,
albeit in different organizations. The two formats of data
arrangement can be related to more abstract concepts of
data organization - Structure of Arrays (SoA) and Array of
Structures (AoS).

A structure of arrays stores all data of the same type
in a single array, and stores all relevant arrays in a single
struct [13]. An array of structures implements the reverse.
A structure is created with all data relevant to that specific
structure, and a single array containing repeating storage of
that struct contains the data.

A sparse set ECS can be conceptualized at a high-level
as an SoA. It groups all data by type and use (component),
and a single struct is available to reference the data (the
system). Similarly, an archetype ECS can be abstracted as
an AoS. Every unique combination of components is a struct
(archetype). These structs are then stored together in an array
(an archetype table).

It is important to note that the connection between SoA
and sparse set, and AoS and archetypal is not one of
implementation. The structure of individual components and
arrays within both sparse set and archetypal ECSs can
be implemented using the developer’s choice of memory
structure.

3. Survey of ECS Implementations
There are many implementations of ECS-based systems

available in both open-source and closed-source formats.
While identifying which implementations would be most
suitable for this research, eight libraries were examined
- Bevy, EnTT, Esper, Flecs, Hecs, Legion, Shipyard, and
Specs [14], [15], [16], [17], [18], [19], [20], [21]. Ultimately,
three were chosen - Flecs, Bevy, and Esper. Flecs and Bevy
were chosen for their thorough documentation and active
development communities. The other, Esper, was chosen
because of its concise nature and novel implementation. All
three libraries analyzed in this research are open-source.
Flecs is written in C, Bevy in Rust, and Esper in Python. The
choice of different languages for the various libraries in this

research was delibrate, attempting to survey as broad a cross-
section of the current availability as possible. The survey
of these libraries allow for an understanding of ECS across
languages, implementations, and uses, providing insight into
the actuality of in-memory storage for entity-component
systems.

3.1 Flecs
Flecs is a bare-bones, pure-ECS library that facilitates

data storage in any variety of applications. However, Flecs
advertises itself as useful with “most game engines and
scripting languages,” indicating some of its common uses
[17].

Flecs uses the archetypal system of ECS storage. The
developers of Flecs highly value the speed at which code
can execute (as do many of Flecs’s users), and the densely
packed arrays of archetypal storage allow for easier vec-
torization at compile time [2]. Densely packed arrays for
component storage in the archetype table data type indicates
that components within a table are stored contiguously in
memory. Contiguous arrangement of data allows for query
results to be cached in those same densely packed arrays,
while also supporting SIMD instructions [2].

Flecs offers a simple querying functionality to access
entities and components within an application. When queries
are executed, the relevant tables are returned and cached in
an internal, Flecs-defined cache structure. Because building
query results can be an expensive operation, the internal
cache allows for easy reuse of entities without having
to rebuild query results. The cache is filled as efficiently
as possible using the contiguous arrays, which house the
components.

There are two variations of queries in the Flecs library
– cached and uncached [17]. Uncached queries (referred to
as filters) act as simple iterators to find the queried data
and immediately return it. These queries act similarly to a
hashmap lookup, and do not store any of the temporary data
after it is returned.

The second type of data retrieval mechanism is cached,
and is referred to as a Query within the system. Caches are
built per query, which adds to the expense of the operation
of querying, but once the query is executed, it is simple to
iterate the query results whenever necessary.

3.2 Bevy
Bevy is an ECS-based game engine for Rust that em-

phasizes simplicity for the user. This simplicity is achieved
through the use of Rust structs and functions as the means of
storing and manipulating data in the program. This research
focuses specifically on the Bevy ECS library (crate, in Rust),
which can be used in conjunction with the game engine or
as a standalone library [14].

Bevy allows the developer to choose what ECS storage
paradigm to employ in their program, based on which

mechanism benefits their uses [7]. Archetypal ECS queries
and iterates entities quickly, but it is known to be expensive
to add or remove components to or from entities. Bevy mit-
igates this drawback by adding directed edges as attributes
to the table of each archetype, indicating what archetypes
correspond to the addition or subtraction of each possible
component [22]. This “archetype graph” that is created can
quickly become very complicated. In response, Bevy uses
Bundles of components to define edges, where applicable,
to make archetype changes en masse. Bevy Bundles can be
described as “templates” to quickly create common sets of
components simultaneously. Both bundles and components
are simple Rust struct data types, however, which can lead
to potential bugs remaining uncaught by the compiler. Part
of Rust’s usefulness is based off of its ability to catch
runtime problems that other languages may miss, so this
fact is less than ideal. However, tuples of components are
also considered by Bevy to be Bundles, which allows for
compiler differentiation of data types, but less readability
and versatility for the developer.

The data in Bevy applications that use sparse set storage
structures are stored by component in Rust vector data types
(Vec). Using data types native to the language allows compo-
nents to be packed as densely and efficiently as possible. The
component data struct is defined in the library; information
about each specific component is stored contiguously in the
component. Data in archetype storage based applications is
stored by column, similar to sparse set storage. Each column
in an archetype is the same component type, so each column
is stored as a BlobVec (a type-erased vector type), packed as
densely as possible to make the most efficient use of memory
space. To create links between the columns to define each
archetype table, the sparse set data type is used to create and
store references to all the columns within a table.

Bevy uses a stateful querying system as a means to
cache query results. When a query is executed, the resulting
archetype is stored in the query state. This stateful mecha-
nism means that the expensive operations within a query,
namely locating matching components and entities, only
need to be executed when the query is first constructed.
Waiting until a query is first built to execute its expensive
operations also allows for iterative expansion of the state, as
the addition of new archetypes does not require re-execution
of previously queried archetypes.

3.3 Esper
Esper is an open-source Python 3 library for entity-

component systems. It was developed with performance in
mind, specifically focused on cache efficiency. Esper differs
greatly from the other ECS libraries in this research because
it does not specifically use archetypal or sparse set storage
paradigms. Esper uses its own sparse-set-adjacent storage
system, not giving much thought to where data is stored in
memory. Instead, the focus of data organization is placed on

how it occurs within the cache.
The Esper library utilizes a Python functools functionality

known as the least-recently-used (LRU) cache [16]. The
LRU cache allows Esper to operate fundamentally differ-
ently from other ECS implementations. While other imple-
mentations employ component archetypes to organize data
efficiently in memory before it is ever queried, Esper gives
no thought to in-memory storage. Instead, it utilizes Python’s
native List data structure to organize components in memory.
Python Lists act as linked lists, maintaining pointers to the
items in memory [23], [24]. Pointers are stored contiguously
in memory, and Lists are dynamically sized to support as
many items as needed. Because Esper uses Python Lists to
store components non-contiguously in memory, it leverages
the LRU cache to organize components contiguously in the
cache for delivery to the program and/or user. Components
stay in the cache, and therefore organized, until the cache
is full, and then cached queries are overwritten, with the
least-recently used queried overwritten first.

This system does have limitations. Since query results are
organized in the cache, as opposed to in-memory, if the data
in a component is changed, the cache is invalidated and the
query must be re-executed to retrieve the most recent data.
If component data is changed often, constant re-rerunning
of queries can quickly become computationally expensive.

4. Conclusions
The main goal of this research is to find what, if any,

overarching in-memory data storage scheme was pervasive
in entity-component system libraries. Through the survey of
the three representative libraries examined in this research, it
is indicated that the basic framework for ECS storage is that
of densely packed arrays. For the purposes of this discussion,
focus is placed on Flecs and Bevy, while Esper is placed in
its own category, given the novelty of its approach.

The following table, table 1, summarizes the similarities
and differences between the libraries surveyed in this re-
search.

Flecs Bevy Esper
Language C Rust Python

Supports Archetypal Storage Yes Yes No
Supports Sparse Set Storage No Yes No

Uses Internal Cache Yes Yes Yes
Graphs Archetype Tables Yes Yes No

Table 1: Summary of ECS Libraries

In both Flecs and Bevy, archetypal storage is organized
by column – the data for each table is stored by group-
ing like components together in dense arrays. Columns of
components are stored contiguously in memory. Bevy and
Flecs differ on whether they gather columns contiguously
in memory. Bevy uses its internal sparse set data structure
to organize references to each column. Flecs organizes all
columns of a table contiguously in memory. The contiguous

organization of data in memory also means that the appli-
cation’s query cache can be filled as efficiently as possible.
Contiguous data also supports the use of SIMD instructions
to be executed on data in the program.

Flecs and Bevy both employ a table graphing system.
This graphing system creates connections between archetype
tables, depending on what components make up each
archetype. In the graph, each individual archetype is a node,
and each relevant manipulation (i.e. addition or removal)
of one or more components is an edge to another node. If
there is not a corresponding archetype for an edge to connect
to, the edge does not exist. The graphing system allows
entities to be transferred between archetypes as efficiently as
possible. If a graph of existing archetypes did not exist, every
individual archetype table would need to be iterated when
components are added or removed from an entity. Instead,
the component or components that are added or removed can
be quickly found on the edges from the archetype where the
entity is currently stored, and the new archetype is found.

In contrast to Bevy and Flecs, Esper gives no thought to
how data is organized and stored in memory, therefore it does
not fit the mold of the more traditional ECS implementations.
Components and entities are not organized into sparse sets
or archetypes. This results in component and entity data not
being linked through any sort of graph system. However,
Esper, like Bevy and Flecs, does use an internal caching
system to quickly reference queries.

Because the action of searching for and retrieving data
from program storage can be computationally expensive,
relative to the size and amount of data being retrieved,
all libraries examined in this research employ an internal
caching system to retain query results for later use. Caching
queries is also beneficial when the number of archetypes
grows. Just as retrieving more data requires more effort
on the part of the application, as more data is introduced,
creating more information through which to search, more
effort is required. When queries only have to be executed
once, and the results can be cached to be used again, the
system can operate with greater efficiency. However, caching
queries is not as beneficial in scenarios where components
are constantly changing, since the cache would continually
be invalidated.

The information presented in this research aims to specif-
ically document the in-memory organization of common
ECS storage frameworks. The use of ECS in data-intensive
applications can serve to benefit computational efficiency.
As data processing needs continue to grow in all sectors
of software applications, the need for efficiency grows in
parallel. In-depth understanding and documentation further
improve all future implementations and uses of entity-
component systems.

5. Acknowledgements
We would extend our gratitude to Sander Mertens and

Michele Caini for their continuing work on and documenta-
tion of ECSs. Their in-depth explanations of many aspects
of entity-component systems served as invaluable references
in this research.

6. Disclaimer
The views expressed in this paper are those of the authors

and do not reflect the official policy or position of the United
States Air Force, the Department of Defense, or the U.S.
Government.

References
[1] R. Fabian, Data-Oriented Design, C. Ring, Ed., 2018. [Online].

Available: www.dataorienteddesign.com
[2] S. Mertens, “ECS FAQ,” 2021. [Online]. Available:

https://github.com/SanderMertens/ecs-faq
[3] “ECS concepts.” [Online]. Available: https://tinyurl.com/yckrhhfd
[4] J. Vagedes, “A study of execution performance for rust-based object

vs data-oriented architectures,” Ph.D. dissertation, Air Force Institute
of Technology, 2020.

[5] S. Mertens, “Building an ECS 2: Archetypes and Vectorization,”
2020. [Online]. Available: https://ajmmertens.medium.com/building-
an-ecs-2-archetypes-and-vectorization-fe21690805f9

[6] M. Caini, “ECS back and forth - Part 2,” 2019. [Online]. Available:
https://skypjack.github.io/2019-03-07-ecs-baf-part-2/

[7] C. Anderson, “Bevy 0.5,” 2021. [Online]. Available:
https://bevyengine.org/news/bevy-0-5/

[8] M. Caini, “ECS back and forth - Part 9,” 2020. [Online]. Available:
https://skypjack.github.io/2020-08-02-ecs-baf-part-9/

[9] “Sparse Sets,” 2012. [Online]. Available:
https://programmingpraxis.com/2012/03/09/sparse-sets/

[10] [Online]. Available: https://leatherbee.org/index.php/2019/09/12/ecs-
1-inheritance-vs-composition-and-ecs-background/

[11] H. Stefan, “Adventures in data-oriented design –
Part 3c: External References,” 2013. [Online]. Avail-
able: https://blog.molecular-matters.com/2013/07/24/adventures-in-
data-oriented-design-part-3c-external-references/

[12] D. Komer, “Ecs with sparse array notes (entt style),” 2020. [Online].
Available: https://tinyurl.com/2p922r6a

[13] J. McMurray, “A introduction to Data Oriented Design with Rust,”
2020. [Online]. Available: jamesmcm.github.io/blog/2020/07/25/intro-
dod/

[14] C. Anderson, “Bevy,” 2022. [Online]. Available:
https://github.com/bevyengine/bevy

[15] M. Caini, “Entt,” 2022. [Online]. Available:
https://github.com/skypjack/entt

[16] B. Moran, “Esper,” 2021. [Online]. Available:
https://github.com/benmoran56/esper

[17] S. Mertens, “Flecs,” 2022. [Online]. Available:
https://github.com/SanderMertens/flecs

[18] B. Saunders, “Hecs,” 2022. [Online]. Available:
https://github.com/Ralith/hecs

[19] “Legion,” 2022. [Online]. Available:
https://github.com/amethyst/legion

[20] “Shipyard User’s Guide.” [Online]. Available:
https://leudz.github.io/shipyard/guide/master/welcome.html

[21] “Specs Documentation,” 2021. [Online]. Available:
https://docs.rs/specs/0.17.0/specs/storage/index.html

[22] I. Iyes, “The Unofficial Bevy Cheat Book,” 2022. [Online]. Available:
https://bevy-cheatbook.github.io/introduction.html

[23] “How is Python’s List Implemented?” 2014. [Online]. Avail-
able: https://stackoverflow.com/questions/3917574/how-is-pythons-
list-implemented

[24] “How are Python lists implemented internally ?” 2013.
[Online]. Available: https://www.quora.com/How-are-Python-lists-
implemented-internally

[25] M. Caini, “ECS back and forth - Part 1,” 2019. [Online]. Available:
https://skypjack.github.io/2019-02-14-ecs-baf-part-1/

[26] S. Mertens, “Flecs (not for dummies),” 2021. [Online]. Available:
https://github.com/SanderMertens/flecs_not_for_dummies

[27] The Cherno, “Entity Component System | Game Engine series,”
2020. [Online]. Available: https://www.youtube.com/watch?v=Z-
CILn2w9K0

[28] P. Briggs and L. Torczon, “An Efficient Representation for Sparse
Sets,” ACM Letters on Programming Languages and Systems (LO-
PLAS), vol. 2, no. 1-4, pp. 59–69, 1993.

[29] M. Acton, “Data-Oriented Design and C++,”
in Cpp-Conference, 2014. [Online]. Available:
https://www.youtube.com/watch?v=rX0ItVEVjHc

[30] M. Kleppmann, Designing Applications Data-Intensive Application,
A. Spencer and M. Beaugureau, Eds. O’Reilly Media, Inc., 2017.

[31] T. Neward, “The Vietnam of Computer Science,” 2006. [Online].
Available: http://blogs.tedneward.com/post/the-vietnam-of-computer-
science/

[32] S. Mertens, “Designing with Flecs,” 2021. [Online]. Available:
https://tinyurl.com/v4kbs638

[33] Mothfuzz, “Archetypes,” 2022. [Online]. Available:
https://github.com/mothfuzz/Archetypes

[34] S. Gupta, “Caching in Python: the LRU algorithm,” 2021. [Online].
Available: https://www.analyticsvidhya.com/blog/2021/08/caching-in-
python-the-lru-algorithm/

[35] C. Anderson, “Bevy ECS V2 Merge Request 1525,” 2021. [Online].
Available: https://github.com/bevyengine/bevy/pull/1525

[36] “ECS Deep Dive,” 2019. [Online]. Available:
https://rams3s.github.io/blog/2019-01-09-ecs-deep-dive/

[37] T. Gillen, “Archetypal vs Grouped ECS Architectures, my take,”
2020. [Online]. Available: https://community.amethyst.rs/t/archetypal-
vs-grouped-ecs-architectures-my-take/1344

[38] I. Kettlewell, “Writing a tiny Entity Component System in Rust,”
2021. [Online]. Available: https://ianjk.com/ecs-in-rust/

[39] “Managing Decoupling Part 4 – The ID Lookup Table,” 2011.
[Online]. Available: http://bitsquid.blogspot.com/2011/09/managing-
decoupling-part-4-id-lookup.html

[40] S. Meyers, “CPU Caches and Why You Care.” Oslo, Norway: NDC
Conference, 2014. [Online]. Available: https://vimeo.com/97337258

Author Biographies
BAILEY V. COMPTON is a 2nd Lieutenant currently
stationed at Wright Patterson Air Force Base, Ohio. She is
a Master’s Student at the Air Force Institute of Technology
(AFIT) studying Computer Science. Lt Compton is a 2020
graduate of the United States Air Force Academy, where she
studied Computer Science.
MAJOR RICHARD DILL is an Assistant Professor of
Computer Science at the Air Force Institute of Technology
(AFIT), Wright-Patterson AFB, Ohio USA. He received a
B.S. in Computer Science from the University of Maryland
at College Park in 2004, and both an M.S. in Computer
Science in 2008 and a Ph.D. in 2018 from AFIT. Major Dill’s
research interests include computer security, algorithms, and
artificial intelligence.
DOUGLAS D. HODSON is an Associate Professor of
Computer Engineering at the Air Force Institute of Technol-
ogy (AFIT), Wright-Patterson AFB, Ohio USA. He received
a B.S. in Physics from Wright State University in 1985, and
both an M.S. in Electro-Optics in 1987 and an M.B.A. in
1999 from the University of Dayton. He completed his Ph.D.
at the AFIT in 2009. His research interests include computer

engineering, software engineering, real-time distributed sim-
ulation, and quantum communications. He is also a DAGSI
scholar and a member of Tau Beta Pi.
MICHAEL R. GRIMAILA (BSEE 1993; MSEE 1995;
Ph.D. 1999, Texas A&M University) is a professor and head
of the Department of Systems Engineering and Management

at the Air Force Institute of Technology, Wright-Patterson
Air Force Base in Ohio, USA. He is a member of Tau
Beta Pi, Eta Kappa Nu, and the Association for Computing
Machinery, as well as a Senior Member of the IEEE, and a
Fellow of the Information System Security Association. He
can be contacted via email at michael.grimaila@afit.edu.

IV. Conclusions

4.1 Research Summary

This thesis set out with three research goals. The first goal, that of documentation

of the common storage models used by entity-component systems, was covered in

chapter II and chapter III. Both of these sections discuss the organization of data

within an ECS, specifically in archetype and sparse set based systems. Chapter I

introduce the concepts of Structure of Arrays (SoA) and Array of Structures (AoS).

SoA and AoS are simply ways to organize data, just as archetypes and sparse sets

are. In fact, the connection between SoA, AoS, and ECS organizations is important.

AoS and SoA are well-defined and pervasive concepts within computer science, and

making a connection between those ideas and the organization of ECS creates greater

understanding of ECS. However, as mentioned in chapter III, these are conceptual

connections at an abstract level. In implementation, both archetypes and sparse sets

can use either AoS or SoA in their memory organizations.

Chapter II discusses at length the comparisons to be made between relational

databases and entity-component systems, fulfulling another research goal. Database

normalization is a well-documented topic with standards and rules. These rules and

standards can be applied to the atomization of components within an ECS. Accessing

more than 50 years of previous research and documentation on the topic can only be

beneficial to the ECS field.

The third topic of note in this research is an in-depth understanding of the or-

ganization of data in program memory of an ECS application. This is satisfied in

chapter III.

The information contained in this thesis provides direct benefits to the United

States Air Force (USAF) and Department of Defense (DoD), as ECS systems are

24

applicable to many training and defense systems. Data, and the organization and

use thereof, affects the realms of air, space, and cyberspace, and will only grow in

influence in the future.

4.2 Future Work

In the future, the research introduced in this thesis can be continued through

several avenues. Three such lines of effort are outlined here.

The first suggested future work may investigate the feasibility of a third type of

ECS storage framework that is able to leverage both sparse set and archetype storage

frameworks simultaneously. This combination framework would possibly be able to

mitigate the inefficiencies in the archetype and sparse set frameworks, and allow for

even more optimized program execution.

Another area of future research on this topic relates to the use of graphs within

archetype storage organization. Many problems within NP-space relate to graphs,

such as the set cover problem. Research into the application and approximation of

solutions to these problems within an archetypal ECS would be beneficial to future

ECS implementations.

The third avenue of research pertains to the relationship between databases and

ECS systems. Expanding on the research in this thesis, database types other than

relational, such as NoSQL and columnar, can be added to the comparison to widen

the basis of research and potential processing benefits inherent to these methods.

25

Bibliography

1. M. Geldard, T. Nugent, and P. Buttfield-Addison, “Software architecture

conference proceedings: ’entity component systems and you: They’re not just for

game developers’,” New York, NY, 2020. [Online]. Available: https://conferences.

oreilly.com/software-architecture/sa-ny/public/schedule/detail/79975.html

2. N. Llopis, “Data-Oriented Design (Or Why You Might Be Shooting

Yourself in The Foot With OOP),” 2009. [Online]. Available: http:

//gamesfromwithin.com/DATA-ORIENTED-DESIGN

3. R. Fabian, Data-Oriented Design, C. Ring, Ed., 2018. [Online]. Available:

www.dataorienteddesign.com

4. United States Government, National Defense Strategy. Unites States

Government, 2018. [Online]. Available: https://dod.defense.gov/Portals/1/

Documents/pubs/2018-National-Defense-Strategy-Summary.pdf

5. C. Anderson, “Bevy,” 2022. [Online]. Available: https://github.com/bevyengine/

bevy

6. M. Caini, “Entt,” 2022. [Online]. Available: https://github.com/skypjack/entt

7. B. Moran, “Esper,” 2021. [Online]. Available: https://github.com/benmoran56/

esper

8. S. Mertens, “Flecs,” 2022. [Online]. Available: https://github.com/

SanderMertens/flecs

9. “Legion,” 2022. [Online]. Available: https://github.com/amethyst/legion

10. B. Saunders, “Hecs,” 2022. [Online]. Available: https://github.com/Ralith/hecs

26

https://conferences.oreilly.com/software-architecture/sa-ny/public/schedule/detail/79975.html
https://conferences.oreilly.com/software-architecture/sa-ny/public/schedule/detail/79975.html
http://gamesfromwithin.com/DATA-ORIENTED-DESIGN
http://gamesfromwithin.com/DATA-ORIENTED-DESIGN
www.dataorienteddesign.com
https://dod.defense.gov/Portals/1/Documents/pubs/2018-National-Defense-Strategy-Summary.pdf
https://dod.defense.gov/Portals/1/Documents/pubs/2018-National-Defense-Strategy-Summary.pdf
https://github.com/bevyengine/bevy
https://github.com/bevyengine/bevy
https://github.com/skypjack/entt
https://github.com/benmoran56/esper
https://github.com/benmoran56/esper
https://github.com/SanderMertens/flecs
https://github.com/SanderMertens/flecs
https://github.com/amethyst/legion
https://github.com/Ralith/hecs

11. D. Ancel, “Shipyard,” 2022.

12. “Shipyard User’s Guide.” [Online]. Available: https://leudz.github.io/shipyard/

guide/master/welcome.html

13. “Specs Documentation,” 2021. [Online]. Available: https://docs.rs/specs/0.17.

0/specs/storage/index.html

14. S. Mertens, “Building an ECS 2: Archetypes and Vectorization,” 2020. [Online].

Available: https://ajmmertens.medium.com/building-an-ecs-2-archetypes-and-

vectorization-fe21690805f9

15. “Array of Structures vs . Array within a Structure,” 2020. [Online].

Available: https://www.geeksforgeeks.org/array-of-structures-vs-array-within-

a-structure-in-c-and-cpp/

16. J. Pennycook, S. Hammond, S. Wright, A. Herdman, I. Miller, and S. Jarvis, “An

investigation of the performance portability of opencl,” Journal of Parallel and

Distributed Computing, vol. 73, p. 1439–1450, 11 2013.

27

https://leudz.github.io/shipyard/guide/master/welcome.html
https://leudz.github.io/shipyard/guide/master/welcome.html
https://docs.rs/specs/0.17.0/specs/storage/index.html
https://docs.rs/specs/0.17.0/specs/storage/index.html
https://ajmmertens.medium.com/building-an-ecs-2-archetypes-and-vectorization-fe21690805f9
https://ajmmertens.medium.com/building-an-ecs-2-archetypes-and-vectorization-fe21690805f9
https://www.geeksforgeeks.org/array-of-structures-vs-array-within-a-structure-in-c-and-cpp/
https://www.geeksforgeeks.org/array-of-structures-vs-array-within-a-structure-in-c-and-cpp/

Acronyms

AoS Array of Structures. 6, 7, 24

API Application-Programmer Interface. 4

C4ISR Command, Control, Communications, Computers and Intelligence, Surveil-

lance, and Reconnaissance. 3

DoD Department of Defense. 3, 24

ECS Entity-Component Systems. iv, 2

ECS Entity-Component System. 3

NDS National Defense Strategy. 3

SIMD Single Instruction, Multiple Data. 6

SoA Structure of Arrays. 6, 24

USAF United States Air Force. 24

28

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

24–03–2022 Master’s Thesis Sept 2020 — Mar 2022

An Investigation of Data Storage in Entity-Component Systems

Bailey V. Compton

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENG-MS-22-M-018

AFRL/RQQD
Building 145
WPAFB OH 45433-7765
DSN 798-6556, COMM 937-904-6556
Email: James.Zeh@us.af.mil

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

Entity-Component Systems (ECS) have grown vastly in application since their introduction more than 20 years ago.
Providing the ability to efficiently manage data and optimize program execution, ECSs, as well as the wider field of
data-oriented design, have attained popularity in the realms of modeling, simulation, and gaming. This manuscript aims
to elucidate and document the storage frameworks commonly found in ECSs, as well as suggesting conceptual
connections between ECSs and relational databases. This formal documentation of the in-memory storage formats of
entity-component systems affords the United States Air Force, the Department of Defense, and the software engineering
community a greater understanding and applicability of the paradigm.

entity-component system, ECS, data-oriented design, dod, relational database, archetype, sparse set, structure of arrays,
array of structures

U U U UU 37

Dr. Douglas D. Hodson, AFIT/ENG

(937) 255-3636, ext 4719

	An Investigation of Data Storage in Entity-Component Systems
	Recommended Citation

	Abstract
	Introduction
	Problem Background
	A Brief Introduction to Entity-Component Systems
	ECS Applications
	ECS Libraries
	The Storage Dilemma

	Research Objectives
	Document Overview

	Paper I: Comparison of Archetypal Entity-Component Systems and Relational Databases
	Paper II: Survey of In-Memory ECS Contiguous Storage Types
	Conclusions
	Research Summary
	Future Work

	Bibliography
	Acronyms

